Journal of Coatings Technology and Research

, Volume 10, Issue 2, pp 277–284

Corrosion behavior of carbon steel coated with magnesium electrodeposited from methyl magnesium chloride solution

  • Samia Ben Hassen
  • Latifa Bousselmi
  • El Mustafa Rezrazi
  • Patrice Berçot
  • Ezzeddine Triki


Magnesium coating was electroplated on carbon steel to improve its corrosion protection. The analytical characterization of the magnesium coating was performed by scanning electron spectroscopy and energy dispersive X-ray spectroscopy. The electrochemical behavior of Mg-coated carbon steel was assessed by electrochemical impedance spectroscopy, open-circuit potential measurements and potentiodynamic polarization curves in 0.03% sodium chloride solution. The electrochemical results showed that the self-corrosion current density (icorr) of magnesium-coated steel was 0.32 mA cm−2 (about 1.8% of that of uncoated steel). Impedance results showed an increase of the total impedance when magnesium coating was applied on steel substrate. The corrosion protection was ensured by a two-step mechanism. The first step was cathodic polarization; the second step was the formation of a barrier due to magnesium oxides composed of MgO, Mg(OH2) and Mg(OH3)Cl.


Magnesium coating Corrosion Impedance Cathodic protection Barrier protection 


  1. 1.
    Bonnel, A, Dabosi, F, Delouis, C, et al., “Corrosion Study of a Carbon Steel in Neutral Chloride Solutions by Impedance Techniques.” J. Electrochem. Soc., 130 (4) 753–761 (1983)CrossRefGoogle Scholar
  2. 2.
    Bousselmi, L, Fiaud, C, et al., “The characterization of the coated layer at the interface carbon steel-natural salt water by impedance spectroscopy.” J. Corros. Sci., 39 (9) 1711–1724 (1997)CrossRefGoogle Scholar
  3. 3.
    Bousselmi, L, Fiaud, C, et al., “Impedance Spectroscopy Study of a Steel Electrode in Condition of Scaling and Corrosion Interphase Model.” Electrochem. Acta, 44 (24) 4357–4363 (1999)CrossRefGoogle Scholar
  4. 4.
    Cheng, YF, Luo, JL, “Electronic Structure and Pitting Susceptibility of Passive Film on Carbon Steel.” Electrochem. Acta, 44 (17) 2947–2957 (1999)CrossRefGoogle Scholar
  5. 5.
    Caceres, L, Vargas, T, Herrera, L, “Determination of Electrochemical Parameters and Corrosion Rate for Carbon Steel in Un-buffered Sodium Chloride Solutions Using a superposition Model.” J. Corros. Sci., 49 (8) 3168–3184 (2007)CrossRefGoogle Scholar
  6. 6.
    Takasaki, S, Yamada, Y, “Effects of Temperature and Aggressive Anions on Corrosion of Carbon Steel in Potable Water.” J. Corros. Sci., 49 (1) 240–247 (2007)CrossRefGoogle Scholar
  7. 7.
    Pérez, C, Collazo, A, et al., “Comparative Study Between Galvanised Steel and Three Duplex Systems Submitted to a Weathering Cyclic Test.” J. Corros. Sci., 44 (3) 481–500 (2002)CrossRefGoogle Scholar
  8. 8.
    Yadav, AP, Nishikata, A, Tsuru, T, “Degradation Mechanism of Galvanized Steel in Wet–Dry Cyclic Environment Containing Chloride Ions.” J. Corros. Sci., 46 (2) 169 (2004)CrossRefGoogle Scholar
  9. 9.
    Song, G, Atrens, A, et al., “The Anodic Dissolution of Magnesium in Chloride and Sulphate Solutions.” J. Corros. Sci., 39 (10–11) 1981–2004 (1997)CrossRefGoogle Scholar
  10. 10.
    Song, G, Atrens, A, et al., “The Electrochemical Corrosion of Pure Magnesium in 1 N NaCl.” J. Corros. Sci., 39 (5) 855–875 (1997)CrossRefGoogle Scholar
  11. 11.
    Yang, BG, Yu, YX, Wang, ZW, Qiu, ZX, “Magnesium Electrodeposition on the Steel Cathode.” J. Northeast. Univ., 21 (5) 62–65 (2000)Google Scholar
  12. 12.
    Brenner, A, Sligh, JL, Electrodeposition of Magnesium and Beryllium from Organic Baths. National Bureau of Standards, Washington, 1971Google Scholar
  13. 13.
    Gregory, TD, Hoffman, RG, Winterton, RC, “Nonaqueous Electrochemistry of Magnesium.” J. Electrochem. Soc., 137 (3) 775–780 (1990)CrossRefGoogle Scholar
  14. 14.
    Mayer, A, “Electrodeposition of Aluminum, Aluminum/Magnesium Alloys, and Magnesium from Organometallic Electrolytes.” J. Electrochem. Soc., 137 (9) 2806–2809 (1990)CrossRefGoogle Scholar
  15. 15.
    Liebenow, C, Yang, Z, Lobitz, P, “The Electrodeposition of Magnesium Using Solutions of Organomagnesium Halides, Amidomagnesium Halides and Magnesium Organoborates.” Electrochem. Commun., 2 (9) 641–645 (2000)CrossRefGoogle Scholar
  16. 16.
    Liebenow, C, “Reversibility of Electrochemical Magnesium Deposition from Grignard Solutions.” J. Appl. Electrochem., 27 (2) 221–225 (1997)CrossRefGoogle Scholar
  17. 17.
    Chevrot, C, Kham, K, Perichon, J, “Determination electrochimique des modifications des proprietes basiques d’organomagnesiens et d’organoalcalins par l’addition d’hexamethylphosphorotriamide ou de cryptate[2,2,2] a du tetrahydrofuranne.” J. Organomet. Chem., 161 (2) 139–151 (1978)CrossRefGoogle Scholar
  18. 18.
    Lopez-Buisàn Natta, MG, “Evidence of Two Anodic Processes in the Polarization Curves of Magnesium in Aqueous Media.” Corrosion, 57 (8) 712–720 (2001)CrossRefGoogle Scholar
  19. 19.
    Rethinam, AJ, Ramesh Bapu, GNK, Krishanan, RM, “Deposition of Nickel–Mica Electrocomposites and Characterisation.” J. Mater. Chem. Phys., 85 (2–3) 251–256 (2004)CrossRefGoogle Scholar
  20. 20.
    Battocchi, D, Simoes, AM, Tallman, DE, Bierwagen, GP, “Electrochemical Behaviour of a Mg-Rich Primer in the Protection of Al Alloys.” J. Corros. Sci., 48 (5) 1292–1306 (2006)CrossRefGoogle Scholar
  21. 21.
    Pébère, N, Riera, C, Dabosi, F, “Investigation of Magnesium Corrosion in Aerated Sodium Sulfate Solution by Electrochemical Impedance Spectroscopy.” J. Electrochim. Acta, 35 (2) 555–561 (1990)CrossRefGoogle Scholar
  22. 22.
    Baril, G, Pébère, N, “The Corrosion of Pure Magnesium in Aerated and Deaerated Sodium Sulphate Solutions.” J. Corros. Sci., 43 (3) 471–484 (2001)CrossRefGoogle Scholar
  23. 23.
    Munoz, FG, Flores, JM, et al., “Electrochemical Study on Magnesium Anodes in NaCl and CaSO4–Mg(OH)2 Aqueous Solutions.” J. Electrochim. Acta, 51 (8–9) 1820–1830 (2006)CrossRefGoogle Scholar
  24. 24.
    Zidoun, M, et al., “Comparative Study on the Corrosion Behavior of Milled and Unmilled Magnesium by Electrochemical Impedance Spectroscopy.” J. Corros. Sci., 46 (12) 3041–3055 (2004)CrossRefGoogle Scholar
  25. 25.
    Kim, JG, Koo, SJ, “Effect of Alloying Elements on Electrochemical Properties of Magnesium-Based Sacrificial Anodes.” Corrosion, 56 (4) 380–388 (2000)CrossRefGoogle Scholar
  26. 26.
    Pourbaix, M, L’Atlas des Equilibres Chimiques à 25°C. Gauthier-Villard, Paris, 1968Google Scholar
  27. 27.
    Qu, Q, Ma, J, Wang, L, et al., “Corrosion Behaviour of AZ31B Magnesium Alloy in NaCl Solutions Saturated with CO2.” J. Corros. Sci., 53 (4) 1186–1193 (2011)CrossRefGoogle Scholar

Copyright information

© American Coatings Association & Oil and Colour Chemists' Association 2012

Authors and Affiliations

  • Samia Ben Hassen
    • 1
    • 3
  • Latifa Bousselmi
    • 2
  • El Mustafa Rezrazi
    • 3
  • Patrice Berçot
    • 3
  • Ezzeddine Triki
    • 1
  1. 1.Unité de Recherche Corrosion & Protection des MétalliquesENITTunis-BelvédèreTunisia
  2. 2.Laboratoire Traitement et Recyclage des EauxCERTEBorj CedriaTunisia
  3. 3.Institut UTINAM, CNRS UMR 6213Université de Franche-ComtéBesançon CedexFrance

Personalised recommendations