Journal of Coatings Technology and Research

, Volume 10, Issue 1, pp 123–132

Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating

  • Farbod Alimohammadi
  • Mazeyar Parvinzadeh Gashti
  • Ali Shamei
Article

Abstract

In this study, carbon nanotubes (CNTs) were stabilized on a cotton surface using 1,2,3,4-butanetetracarboxylic acid (BTCA) as a crosslinking agent and sodium hypophosphite as a catalyst. The influence of CNTs on the performance of the cellulose fiber was investigated using a Raman spectrophotometer, thermogravimetric analyzer, a scanning electron microscope, electrical contacting equipment, and an electromagnetic field detector. The possible interactions between CNTs, a crosslinking agent, and cellulose functional groups at the surface were elucidated by Raman spectroscopy. The results indicate that the stabilized CNTs modify the surface of the fibers and increase the functionality and thermal stability of the substrate. SEM showed a uniform coating of CNTs on the fiber surface.

Keywords

Fabrics/textiles Electrical properties Surface analysis 

References

  1. 1.
    Xu, J, Fisher, TS, “Enhancement of Thermal Interface Materials with Carbon Nanotube Arrays.” Int. J. Heat Mass Transf., 49 1658–1666 (2006)CrossRefGoogle Scholar
  2. 2.
    Polizu, S, Maugey, M, Poulin, S, Yahia, L, “Nanoscale Surface of Carbon Nanotube Fibers for Medical Applications: Structure and Chemistry Revealed by TOF-SIMS Analysis.” Appl. Surf. Sci., 252 6750–6753 (2006)CrossRefGoogle Scholar
  3. 3.
    Oh, J, Chang, YW, Kim, HJ, Yoo, S, Kim, DJ, Im, S, Park, YJ, Kim, D, Yoo, KH, “Carbon Nanotube-Based Dual-Mode Biosensor for Electrical and Surface Plasmon Resonance Measurements.” Nano Lett., 10 2755–2760 (2010)CrossRefGoogle Scholar
  4. 4.
    Harrison, BS, Atala, A, “Carbon Nanotube Applications for Tissue Engineering.” Biomaterials, 28 344–353 (2007)CrossRefGoogle Scholar
  5. 5.
    Bellayer, S, Gilman, JW, Rahatekar, SS, Bourbigot, S, Flambard, X, Hanssen, LM, Guo, H, Kumar, S, “Characterization of SWCNT and PAN/SWCNT Films.” Carbon, 45 2417–2423 (2007)CrossRefGoogle Scholar
  6. 6.
    Byl, O, Liu, J, Yates, JTJr, “Characterization of Single Wall Carbon Nanotubes by Nonane Preadsorption.” Carbon, 44 2039–2044 (2006)CrossRefGoogle Scholar
  7. 7.
    Thostenson, ET, Ren, Z, Chou, TW, “Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review.” Compos. Sci. Technol., 61 1899–1912 (2001)CrossRefGoogle Scholar
  8. 8.
    Duclaux, L, “Review of the Doping of Carbon Nanotubes (Multiwalled and Single-Walled).” Carbon, 40 1751–1764 (2002)CrossRefGoogle Scholar
  9. 9.
    Coleman, JN, Khan, U, Blau, WJ, Gunko, YK, “Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube–Polymer Composites.” Carbon, 44 1624–1652 (2006)CrossRefGoogle Scholar
  10. 10.
    Tzitzios, V, Georgakilas, V, Oikonomou, E, Karakassides, M, Petridis, D, “Synthesis and Characterization of Carbon Nanotube/Metal Nanoparticle Composites Well Dispersed in Organic Media.” Carbon, 44 848–853 (2006)CrossRefGoogle Scholar
  11. 11.
    Yang, D, Hu, J, Wang, C, “Synthesis and Characterization of pH-Responsive Single-Walled Carbon Nanotubes with a Large Number of Carboxy Groups.” Carbon, 44 3161–3167 (2006)CrossRefGoogle Scholar
  12. 12.
    Najafi, E, Kim, JY, Han, SH, Shin, K, “UV-Ozone Treatment of Multi-walled Carbon Nanotubes for Enhanced Organic Solvent Dispersion.” Colloids Surf. A, 284–285 373–378 (2006)CrossRefGoogle Scholar
  13. 13.
    Wepasnick, KA, Smith, BA, Schrote, KE, Wilson, HK, Diegelmann, SR, Fairbrother, DH, “Surface and Structural Characterization of Multi-Walled Carbon Nanotubes Following Different Oxidative Treatments.” Carbon, 49 24–36 (2011)CrossRefGoogle Scholar
  14. 14.
    Angelikopoulos, P, Gromov, A, Leen, A, Nerushev, O, Bock, H, Campbell, EEB, “Dispersing Individual Single-Wall Carbon Nanotubes in Aqueous Surfactant Solutions Below the cmc.” J. Phys. Chem. C, 114 2–9 (2010)CrossRefGoogle Scholar
  15. 15.
    Mora, RJ, Vilatela, JJ, Windle, AH, “Properties of Composites of Carbon Nanotube Fibres.” Compos. Sci. Technol., 69 1558–1563 (2009)CrossRefGoogle Scholar
  16. 16.
    Chen, H, Liu, Z, Cebe, P, “Chain Confinement in Electrospun Nanofibers of PET with Carbon Nanotubes.” Polymer, 50 872–880 (2009)CrossRefGoogle Scholar
  17. 17.
    Lee, C, Baik, S, “Vertically-Aligned Carbon Nanotube Membrane Filters with Superhydrophobicity and Superoleophilicity.” Carbon, 48 2192–2197 (2010)CrossRefGoogle Scholar
  18. 18.
    Xue, P, Park, KH, Tao, XM, Chen, W, Cheng, XY, “Electrically Conductive Yarns Based on PVA/Carbon Nanotubes.” Compos. Struct., 78 271–277 (2007)CrossRefGoogle Scholar
  19. 19.
    Meng, Q, Hu, J, “Self-Organizing Alignment of Carbon Nanotube in Shape Memory Segmented Fiber Prepared by In Situ Polymerization and Melt Spinning.” Composites Part A, 39 314–321 (2008)CrossRefGoogle Scholar
  20. 20.
    Pötschke, P, Andres, T, Villmow, T, Pegel, S, Brünig, H, Kobashi, K, Fischer, D, Haussler, L, “Liquid Sensing Properties of Fibres Prepared by Melt Spinning from Poly(lactic acid) Containing Multi-walled Carbon Nanotubes.” Compos. Sci. Technol., 70 343–349 (2010)CrossRefGoogle Scholar
  21. 21.
    Chou, TW, Gao, L, Thostenson, ET, Zhang, Z, Byun, JH, “An assessment of the Science and Technology of Carbon Nanotube-Based Fibers and Composites.” Compos. Sci. Technol., 70 1–19 (2010)CrossRefGoogle Scholar
  22. 22.
    Inagaki, M, Kaneko, K, Nishizawa, T, “Nanocarbons—Recent Research in Japan.” Carbon, 42 1401–1417 (2004)CrossRefGoogle Scholar
  23. 23.
    Shim, BS, Chen, W, Doty, C, Xu, C, Kotov, A, “Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes.” Nano Lett., 8 4151–4157 (2008)CrossRefGoogle Scholar
  24. 24.
    Hu, L, Pasta, M, Mantia, FL, Cui, L, Jeong, S, Deshazer, HD, Choi, JW, Han, SM, Cui, Y, “Stretchable, Porous, and Conductive Energy Textiles.” Nano Lett., 10 708–714 (2010)CrossRefGoogle Scholar
  25. 25.
    El-tahlawy, KF, El-bendary, MA, Elhendawy, AG, Hudson, SM, “The Antimicrobial Activity of Cotton Fabrics Treated with Different Crosslinking Agents and Chitosan.” Carbohydr. Polym., 60 421–430 (2005)CrossRefGoogle Scholar
  26. 26.
    Hsieh, SH, Huang, ZK, Huang, ZZ, Tseng, ZS, “Antimicrobial and Physical Properties of Woolen Fabrics Cured with Citric Acid and Chitosan.” J. Appl. Polym. Sci., 94 1999–2007 (2004)CrossRefGoogle Scholar
  27. 27.
    Knittel, D, Schollmeyer, E, “Electrically High-Conductive Textiles.” Synth. Met., 159 1433–1437 (2009)CrossRefGoogle Scholar
  28. 28.
    Kavkler, K, Demsar, A, “Examination of Cellulose Textile Fibres in Historical Objects by Micro-Raman Spectroscopy.” Spectrochim. Acta A, 78 740–746 (2011)CrossRefGoogle Scholar
  29. 29.
    Montazer, M, Alimohammadi, F, Shamei, A, Rahimi, MK, “In Situ Synthesis of Nano Silver on Cotton Using Tollens’ Reagent.” Carbohydrate Polymers, 87 1706–1712 (2012)CrossRefGoogle Scholar
  30. 30.
    Adebajo, MO, Frost, RL, Kloprogge, JT, Kokot, S, “Raman Spectroscopic Investigation of Acetylation of Raw Cotton.” Spectrochim. Acta A, 64 448–453 (2006)CrossRefGoogle Scholar
  31. 31.
    Abidi, N, Cabrales, L, Hequet, E, “Thermogravimetric Analysis of Developing Cotton Fibers.” Thermochim. Acta, 498 27–32 (2010)CrossRefGoogle Scholar
  32. 32.
    Cabrales, L, Abidi, N, “On the Thermal Degradation of Cellulose in Cotton Fibers.” J. Therm. Anal. Calorim., 102 485–491 (2010)CrossRefGoogle Scholar
  33. 33.
    Alimohammadi, F, Parvinzadeh Gashti, M, Shamei, A, Kiumarsi, A, “Deposition of Silver Nanoparticles on Carbon Nanotube by Chemical Reduction Method: Evaluation of Surface, Thermal and Optical Properties.” Superlattices Microstruct., 52 50–62 (2012)CrossRefGoogle Scholar
  34. 34.
    Yang, DJ, Wang, SG, Zhang, Q, Sellin, PJ, Chen, G, “Thermal and Electrical Transport in Multi-walled Carbon Nanotubes.” Phys. Lett. A, 329 207–213 (2004)CrossRefGoogle Scholar
  35. 35.
    Parvinzadeh, M, Moradian, S, Rashidi, A, Yazdanshenas, ME, “Surface Characterization of Polyethylene Terephthalate/Silica Nanocomposites.” Appl. Surf. Sci., 256 2792–2802 (2010)CrossRefGoogle Scholar
  36. 36.
    Parvinzadeh, M, Moradian, S, Rashidi, A, Yazdanshenas, ME, “Effect of Addition of Modified Nanoclays on Surface Properties of the Resultant Polyethylene Terephthalate/Clay Nanocomposites.” Polym. Plast. Technol. Eng., 49 1–11 (2010)CrossRefGoogle Scholar
  37. 37.
    Hajiraissi, R, Parvinzadeh, M, “Preparation of Polybutylene Terephthalate/Silica Nanocomposites by Melt Compounding: Evaluation of Surface Properties.” Appl. Surf. Sci., 257 8443–8450 (2011)CrossRefGoogle Scholar
  38. 38.
    Parvinzadeh, M, Ebrahimi, I, “Atmospheric Air-Plasma Treatment of Polyester Fiber to Improve the Performance of Nanoemulsion Silicone.” Appl. Surf. Sci., 257 4062–4068 (2011)CrossRefGoogle Scholar
  39. 39.
    Parvinzadeh, M, Hajiraissi, R, “Effect of Nano and Micro Emulsion Silicone Softeners on properties of Polyester Fibers.” Tenside Surfactant Deterg., 45 254–257 (2008)Google Scholar
  40. 40.
    Tao, X, Wearable Electronics and Photonics. Woodhead Publishing, Cambridge, 2005CrossRefGoogle Scholar
  41. 41.
    Brown, PJ, Stevens, K, Nanofibers and Nanotechnology in Textiles, p. 183. Woodhead Publishing, Cambridge, 2007CrossRefGoogle Scholar
  42. 42.
    Panhuis, M, Jian, W, Ashraf, SA, Wallace, GG, “Conducting Textiles from Single-Walled Carbon Nanotubes.” Synth. Met., 157 358–362 (2007)CrossRefGoogle Scholar
  43. 43.
    Kim, HM, Kim, K, Lee, CY, Wallace, GG, “Electrical Conductivity and Electromagnetic Interference Shielding of Multiwalled Carbon Nanotube Composites Containing Fe Catalyst.” Appl. Phys. Lett., 84 589–591 (2004)CrossRefGoogle Scholar
  44. 44.
    Parvinzadeh, M, Eslami, S, “Optical and Electromagnetic Characteristics of Clay–Iron Oxide Nanocomposites.” Res. Chem. Intermed., 37 771–784 (2011)CrossRefGoogle Scholar
  45. 45.
    Alimohammadi, F, Parvinzadeh, M, Shamei, A, “Carbon Nanotube Embedded Textiles.” US Patent, 0171413, 2011Google Scholar
  46. 46.
    Montazer, M, Alimohammadi, F, Shamei, A, Rahimi, MK, “Durable Antibacterial and Cross-Linking Cotton with Colloidal Silver Nanoparticles and Butane Tetracarboxylic Acid Without Yellowing.” Colloid Surf. B, 89 196–202 (2012)CrossRefGoogle Scholar
  47. 47.
    Parvinzadeh Gashti, M, Alimohammadi, F, Shamei, A, “Preparation of Water-Repellent Cellulose Fibers Using a Polycarboxylic Acid/Hydrophobic Silica Nanocomposite Coating.” Surf. Coat. Technol., 206 3208–3215 (2012)CrossRefGoogle Scholar
  48. 48.
    Montazer, M, Shamei, A, Alimohammadi, F, “Stabilized Nanosilver Loaded Nylon Knitted Fabric Using BTCA Without Yellowing.” Prog. Org. Coat., 74 270–276 (2012)CrossRefGoogle Scholar
  49. 49.
    Shamei, A, Parvinzadeh, M, Alimohammadi, F, “Water-Resistance Silica-Embedded Textiles.” US Patent 0287245, 2011Google Scholar
  50. 50.
    Huang, Y, Li, N, Ma, Y, Du, F, Li, F, He, X, Lin, X, Gao, H, Chen, Y, “The Influence of Single-Walled Carbon Nanotube Structure on the Electromagnetic Interference Shielding Efficiency of Its Epoxy Composites.” Carbon, 45 1614–1621 (2007)CrossRefGoogle Scholar
  51. 51.
    Park, KY, Lee, SE, Kim, CG, Han, JH, “Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures.” Compos. Sci. Technol., 66 576–584 (2006)CrossRefGoogle Scholar
  52. 52.
    Li, N, Huang, Y, Du, F, He, X, Lin, X, Gao, H, Ma, Y, Li, F, Chen, Y, Eklund, PC, “Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites.” Nano Lett., 6 1141–1145 (2006)CrossRefGoogle Scholar
  53. 53.
    Liu, Z, Bai, G, Huang, Y, Ma, Y, Du, F, Li, F, Guo, T, Chen, Y, “Reflection and Absorption Contributions to the Electromagnetic Interference Shielding of Single-Walled Carbon Nanotube/Polyurethane Composites.” Carbon, 45 821–827 (2007)CrossRefGoogle Scholar
  54. 54.
    Alimohammadi, F, Parvinzadeh Gashti, M, Shamei, A, “A Novel Method for Coating of Carbon Nanotube on Cellulose Fiber Using 1,2,3,4-butanetetracarboxylic Acid as a Cross-linking Agent.” Prog. Org. Coat., 74 470–478 (2012)CrossRefGoogle Scholar
  55. 55.
    Parvinzadeh Gashti, M, Eslami, S, “Structural, Optical and Electromagnetic Properties of Aluminum–clay Nanocomposites.” Superlattice Microstruct., 51 135–148 (2012)CrossRefGoogle Scholar
  56. 56.
    Parvinzadeh Gashti, M, Almasian, A, “Synthesizing Tertiary Silver/Silica/Kaolinite Nanocomposite Using Photo-reduction Method: Characterization of Morphology and Electromagnetic Properties.” Compos. Part B: Eng. doi:10.1016/j.compositesb.2012.01.050
  57. 57.
    Chang, CM, Liu, YL, “Electrical Conductivity Enhancement of Polymer/Multiwalled Carbon Nanotube (MWCNT) Composites by Thermally-Induced Defunctionalization of MWCNTs.” ACS Appl. Mater. Interfaces, 3 2204–2208 (2011)CrossRefGoogle Scholar

Copyright information

© American Coatings Association & Oil and Colour Chemists' Association 2012

Authors and Affiliations

  • Farbod Alimohammadi
    • 1
  • Mazeyar Parvinzadeh Gashti
    • 2
  • Ali Shamei
    • 1
  1. 1.Young Researchers ClubIslamic Azad University-South Tehran BranchTehranIran
  2. 2.Department of TextileIslamic Azad University, Shahre Rey BranchTehranIran

Personalised recommendations