Skip to main content
Log in

“Quebracho” tannin derivative and boosters biocides for new antifouling formulations

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The growth of fouling communities on ships’ hulls causes economic losses due to increased fuel consumption and to the deterioration of the metallic substrate by corrosion. Antifouling paints are formulated to avoid the settlement of these organisms and may contain biocides as active compounds. The objective of this research was to evaluate the antifouling performance of paints formulated with a “quebracho” tannin derivative (zinc “tannate”) and “boosters” (secondary biocides). The “boosters” used in this study were bismuth lactate, a zeolite exchanged with silver cations, and the same zeolite modified with silver chloride. Bioassays with “boosters” solutions were carried out employing Artemia persimilis. Soluble matrix antifouling paints were formulated and their action was assessed in a natural sea water environment. Results showed that the bismuth lactate resulted in a coating with almost triple service life of the antifouling paints with zinc “tannate.” Paints formulated with the silver composites behaved slightly better than the control paint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mukherjee, A, Mohan, KV, Ramesh, US, “Predicted Concentrations of Biocides from Antifouling Paints in Visakhapatnam Harbour.” J. Environ. Manag., 90 S51–S59 (2009)

    Article  CAS  Google Scholar 

  2. Le, Y, Hou, P, Wang, J, Chen, JF, “Controlled Release Active Antimicrobial Corrosion Coatings with Ag/SiO2 Core–Shell Nanoparticles.” Mater. Chem. Phys., 120 351–355 (2010)

    Article  CAS  Google Scholar 

  3. Chambers, LD, Stokes, KR, Walsh, FC, Wood, RJK, “Modern Approaches to Marine Antifouling Coatings.” Surf. Coat. Technol., 201 3642–3652 (2006)

    Article  CAS  Google Scholar 

  4. Pérez, M, García, M, Blustein, G, Stupak, M, “Tannin and Tannate from the Quebracho Tree: An Eco-Friendly Alternative for Controlling Marine Biofouling.” Biofouling, 23 (3/4) 151–159 (2007)

    Article  Google Scholar 

  5. Laks, P, “Flavonoid Biocides: Phytoalexin Analogues from Condensed Tannins.” Phytochemistry, 26 (6) 1617–1621 (1987)

    Article  CAS  Google Scholar 

  6. Xie, D, Dixon, R, “Proanthocyanidin Biosynthesis—Still More Questions than Answers?” Phytochemistry, 66 2127–2144 (2005)

    Article  CAS  Google Scholar 

  7. Scalbert, A, “Antimicrobial Properties of Tannins.” Phytochemistry, 30 3875–3883 (1991)

    Article  CAS  Google Scholar 

  8. Pérez, M, Blustein, G, García, M, del Amo, B, Stupak, M, “Cupric Tannate: A Low Copper Content Antifouling Pigment.” Prog. Org. Coat., 55 311–315 (2006)

    Article  Google Scholar 

  9. Bellotti, N, Deyá, C, del Amo, B, Romagnoli, R, “Antifouling Paint with Zinc “Tannate”.” Ind. Eng. Chem. Res., 49 3386–3390 (2010)

    Article  CAS  Google Scholar 

  10. Karlsson, J, Eklund, B, “New Biocide-Free Anti-Fouling Paints are Toxic.” Mar. Pollut. Bull., 49 456–464 (2004)

    Article  CAS  Google Scholar 

  11. Konstantinou, IK, Albanis, TA, “Worldwide Occurrence and Effects of Antifouling Paint Booster Biocides in the Aquatic Environment: A Review.” Environ. Int., 30 235–248 (2004)

    Article  CAS  Google Scholar 

  12. Konstantinou, I, Antifouling Paint Biocides. Springer, Berlin, 2006

    Book  Google Scholar 

  13. Meyer, B, “Approaches to Prevention, Removal and Killing of Biofilms.” Int. Biodet. Biodeg., 51 249–253 (2003)

    Article  CAS  Google Scholar 

  14. Stobie, N, Duffy, B, Colreavy, J, McHale, P, Hinder, S, McCormack, D, “Dual-Action Hygienic Coatings: Benefits of Hydrophobicity and Silver Ion Release for Protection of Environmental and Clinical Surfaces.” J. Colloid Interf. Sci., 345 286–292 (2010)

    Article  CAS  Google Scholar 

  15. Arai, T, Harino, H, Ohji, M, Langston, WJ, Ecotoxicology of Antifouling Biocides. Springer, Tokyo, 2009

    Book  Google Scholar 

  16. Redfield, A, Weiss, C, “The Resistance of Metallic Silver to Marine Fouling.” Biol. Bull., 94 (1) 25–28 (1948)

    Article  CAS  Google Scholar 

  17. Top, A, Ülkü, S, “Silver, Zinc, and Copper Exchange in a Na-Clinoptilolite and Resulting Effect on Antibacterial Activity.” Appl. Clay Sci., 27 13–19 (2004)

    Article  CAS  Google Scholar 

  18. Yang, HL, Lin, J, Huang, C, “Application of Nanosilver Surface Modification to RO Membrane and Spacer for Mitigating Biofouling in Seawater Desalination.” Water Res., 43 3777–3786 (2009)

    Article  CAS  Google Scholar 

  19. Fujino, J, Motontani, S, Inohara, K, Katsumura, R, Application Number: JP19870086523 19870407

  20. GB 1000775, Applicant M&T CHEMICALS INC, Application Number: GB19630046719 19631126

  21. GB 1041058, Applicant M&T CHEMICALS INC, Application Number: GB19630023641 19630613

  22. Ferreira, E, Nogueira, A, Souza, G, Batista, L, “Effect of Drying Method and Length of Storage on Tannin and Total Phenol Concentrations in Pigeon Pea Seeds.” Food Chem., 86 17–23 (2004)

    Article  CAS  Google Scholar 

  23. Dominy, N, Davoust, E, Minekus, M, “Adaptive Function of Soil Consumption: An In Vitro Study Modeling the Human Stomach and Small Intestine.” J. Exp. Biol., 207 319–324 (2004)

    Article  Google Scholar 

  24. Erdemoğlu, SB, Gűcer, Ş, “Selective Determination of Aluminum Bound with Tannin in Tea Infusion.” Anal. Sci., 21 1005–1008 (2005)

    Article  Google Scholar 

  25. Snell, FD, Snell, CT, Colorimetric Methods of Analysis. D. Van Nostrand Company, New York, 1941

    Google Scholar 

  26. Leyva, RR, Medellín, CN, Guerrero, CR, Berber, MM, Aragón, PA, Jacobo, AA, “Intercambio iónico de plata (I) en solución acuosa sobre clinoptilolita.” Rev. Int. Contam. Ambient., 21 (4) 193–200 (2005)

    Google Scholar 

  27. Harris, DC, Análisis Químico Cuantitativo. Iberoam, México, 1992

    Google Scholar 

  28. Wilson, CL, Wilson, DW, Comprehensive Analytical Chemistry. Elsevier, London, 1960

    Google Scholar 

  29. Dahms, HU, Hellio, C, “Laboratory Bioassays for Screening Marine Antifouling Compounds.” In: Hellio, C, Yebra, D (eds.) Advances in Marine Antifouling Coatings and Technologies, pp. 275–307. Woodhead Publishing Limited/CRC Press, Cambridge, 2009

    Chapter  Google Scholar 

  30. Persoone, G, Jaspers, E, Clasus, C, “Ecotoxicological Testing for the Marine Environment.” Proc. of the International Symposium on Ecotoxicological Testing for the Marine Environment Ghent, Belgium, 1983

  31. Persoone, G, Wells, PG, “Artemia in Aquatic Toxicology: A Review.” In: Sorgeloos, P, Bengtoson, DA, Decleir, W, Jaspers, F (eds.) Artemia Research and Its Applications. Morphology, Genetics, Strain Characterization, Toxicology, Vol. 1, pp. 259–275. University Press, Belgium, 1987

    Google Scholar 

  32. Vetere, V, Pérez, M, García, M, Deyá, M, Stupak, M, del Amo, B, “A Non-Toxic Antifouling Compound for Marine Paints.” Surf. Coat. Int., 12 386–389 (1999)

    Google Scholar 

  33. Ortega-Morales, B, Chan-Bacab, M, Miranda-Tello, E, Fardeau, M, Carrero, J, Stein, T, “Antifouling Activity of Sessile Bacilli Derived from Marine Surfaces.” Ind. Microbiol. Biotechnol., 35 9–15 (2008)

    Article  CAS  Google Scholar 

  34. Díaz Baez, M, Bulus Rossini, G, Pica Granados, Y, “Métodos Estadísticos para el Análisis de Resultados de Toxicidad Ensayos toxicológicos y métodos de evaluación de calidad de aguas.” In: Castillo, G (ed.) Estandarización, intercalibración, resultados y aplicaciones, Chap. 5. IDRC Books, Canada, 2004

  35. Bastida, R, Martin, JP, La vida entre mareas: vegetales y animales de las costas de Mar del Plata. INIDEP, Mar del Plata, 2004

    Google Scholar 

  36. Del Amo, B, Giúdice, CA, Rascio, V, “Influence of Binder Dissolution Rate on the Bioactivity of Antifouling Paints.” J. Coat. Technol., 56 63–69 (1984)

    Google Scholar 

  37. Del Amo, B, Giúdice, CA, Sindoni, O, “High Build Soluble Matrix Antifouling Paints Based on Vinyl Resin.” Prog. Org. Coat., 17 2287–2300 (1989)

    Google Scholar 

  38. Del Amo, B, Giúdice, CA, Villoria, G, “Antifouling Paints of High Sea Water Dissolution Rate.” Eur. Coat. J., 1 8–14 (1990)

    Google Scholar 

  39. Ytreberg, E, Karlsson, J, Eklund, B, “Comparison of Toxicity and Release Rates of Cu and Zn from Anti-Fouling Paints Leached in Natural and Artificial Brackish Seawater.” Sci. Total Environ., 408 2459–2466 (2010)

    Article  CAS  Google Scholar 

  40. Sillén, L, Martell, A, Stability Constants of Metal-Ion Complexes. The Chemical Society, Burlington House, London, 1964

    Google Scholar 

  41. Kumar, R, Munstedt, H, “Silver Ion Release from Antimicrobial Polyamide/Silver Composites.” Biomaterials, 26 2081–2088 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICBA), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Universidad Nacional de La Plata (UNLP) for their support in carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bellotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellotti, N., Deyá, C., del Amo, B. et al. “Quebracho” tannin derivative and boosters biocides for new antifouling formulations. J Coat Technol Res 9, 551–559 (2012). https://doi.org/10.1007/s11998-012-9403-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-012-9403-0

Keywords

Navigation