Application of molecular dynamics computer simulations to evaluate polymer–solvent interactions



In this article, systematic calculation of the radius of gyration (R g) of a block copolymer immersed in various solvents is presented. Using atomistically detailed, molecular dynamics computer simulations, we carry out the calculation of R g at different polymerization degrees, for each solvent. Our results show that, given a solvent and a polymerization degree, R g can display different values. This aspect is found to be a consequence of the spatial conformation of the constitutive blocks that make up the polymer molecule. Finally, we find that there exists a correlation between R g and the solubility parameter and that the trend in R g predicted by our calculations agrees with previous experimental results.


Polymer solubility Solubility parameter Molecular simulation Radius of gyration 



The authors thank A. Ceniceros, E. Rivera, and Klaus Stark (Accelrys) for fruitful discussions in the course of this study.


  1. 1.
    Moore, JC, “A New Method for Molecular Weight Distribution of High Polymers.” J. Polym. Sci., 2 835 (1964)Google Scholar
  2. 2.
    Holmberg, K, Jönsson, B, Kronberg, B, Lindman, B, Surfactants and Polymers in Aqueous Solution, p. 175. Wiley, West Sussex, 1998Google Scholar
  3. 3.
    Hiemenz, PC, Polymer Chemistry. Marcel Dekker, New York, 1984Google Scholar
  4. 4.
    Flory, PJ, Statistical Mechanics of Chain Molecules. Interscience Publishers, New York, 1969Google Scholar
  5. 5.
    de Gennes, PG, Scaling Concept in Polymer Physics. Cornell University Press, New York, 1979Google Scholar
  6. 6.
    Doi, M, Edwards, SF, The Theory of Polymer Dynamics. Oxford University Press, New York, 1986Google Scholar
  7. 7.
    Allen, MP, Tildesley, DJ, Computer Simulations of Liquids. Claredon, Oxford, 1987Google Scholar
  8. 8.
  9. 9.
    Sun, H, “COMPASS: An Ab Initio Force-Field Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds.” J. Phys. Chem. B., 102 7338–7364 (1998)CrossRefGoogle Scholar
  10. 10.
    Sun, H, Ren, P, Fred, JR, “The COMPASS Force Field: Parameterization and Validation for Polyphosphazenes.” Comput. Theor. Polym. Sci., 8 229–246 (1998)CrossRefGoogle Scholar
  11. 11.
    Martin, MG, “Comparison of the AMBER, CHARMM, COMPASS, GROMOS, OPLS, TraPPE and UFF Force Fields for Prediction of Vapor–Liquid Coexistence Curves and Liquid Densities.” Fluid Phase Equilib., 248 50–55 (2006)CrossRefGoogle Scholar
  12. 12.
    Rigby, D, “Fluid Density Predictions Using the COMPASS Force Field.” Fluid Phase Equilib., 217 77–87 (2004)CrossRefGoogle Scholar
  13. 13.
    Ponder, JW, Case, DA, “Force Fields for Protein Simulation.” Adv. Protein Chem., 66 27–85 (2003)CrossRefGoogle Scholar
  14. 14.
    Price, DJ, Brooks, CL, III, “Modern Protein Force Fields Behave Comparably in Molecular Dynamics Simulations.” J. Comput. Chem., 23 1045 (2002)CrossRefGoogle Scholar
  15. 15.
    Patra, M, Karttunen, M, “Systematic Comparison of Force Fields for Microscopic Simulations of NaCl in Aqueous Solutions: Diffusion, Free Energy of Hydration, and Structural Properties.” J. Comput. Chem., 25 678–689 (2004)CrossRefGoogle Scholar
  16. 16.
    Berendsen, HJC, Postma, JPM, van Gunsteren, WF, Hermans, J, In: Pullman, B (ed.) Intermolecular Forces. Reidel, Dordrecht, 1981Google Scholar
  17. 17.
    Holmberg, K, Jönsson, B, Kronberg, B, Lindman, B, Surfactants and Polymers in Aqueous Solution, p. 178. Wiley, West Sussex, 1998Google Scholar
  18. 18.
    Brandrup, J, Immergut, EH, Grulke, EA (eds.) Polymer Handbook, 4th ed., Vol. VII, pp. 675–711. Wiley, New York, 1999Google Scholar

Copyright information

© ACA and OCCA 2011

Authors and Affiliations

  1. 1.Centro de Investigación en Polímeros (Grupo COMEX)AcolmanMexico
  2. 2.Departamento de Ciencias Naturales, DCNIUniversidad Autónoma MetropolitanaMéxicoMexico

Personalised recommendations