Advertisement

Journal of Coatings Technology and Research

, Volume 7, Issue 2, pp 219–228 | Cite as

The influence of nanoadditives on surface, permeability and mechanical properties of self-organized organic–inorganic nanocomposite coatings

  • Milena ŠpírkováEmail author
  • Adam Strachota
  • Libuše Brožová
  • Jiří Brus
  • Martina Urbanová
  • Josef Baldrian
  • Miroslav Šlouf
  • Olga Bláhová
  • Petr Duchek
Article

Abstract

Transparent and colorless nanocomposite coatings were prepared from a hybrid organic–inorganic matrix and several inorganic nanofillers. The products are characterized by a high degree of self-assembling of the matrix which was prepared from an epoxy-functional organosilicon precursor and an oligomeric diamine. Unmodified and chemically modified montmorillonite, bentonite, laponite, and colloidal silica were used as nanofillers, differing in shape, size, and origin. The nanoadditive concentration in coatings was always 0.5 wt%. Solid-state NMR (13C and 29Si CP/MAS) spectroscopy was used for estimation of polyaddition and polycondensation degree in the polymer matrix in order to evaluate its structure changes caused by interaction with the nanoadditives. The influence of the kind of additive on the dynamic mechanical properties, gas permeability, and surface properties (topography, roughness) is discussed.

Keywords

Coatings Nanoadditives Nanocomposite Organic-inorganic hybrids 

Notes

Acknowledgments

The authors from IMC AS CR wish to thank the Grant Agency of the Academy of Sciences of the Czech Republic (project IAA400500505) and from UWB the Ministry of Education, Youth and Sports (project MSM 4977751303) for financial support.

References

  1. 1.
    Toselli, M., Marini, M., Fabbri, P., Messori, M., Pilati, F., “Sol-gel derived hybrid coatings for the improvement of scratch resistance of polyethylene,” J. Sol-Gel Sci. Technol., 43, 73–83 (2007). doi: 10.1007/s10971-007-1560-8.CrossRefGoogle Scholar
  2. 2.
    Duran, A., Castro, Y., Aparicio, M., Conde, A., de Damborenea, J. J., “Protection and surface modification of metals with sol-gel coatings,” Int. Mater. Rev., 52, 175–192 (2007). doi: 10.1179/174328007X160263.CrossRefGoogle Scholar
  3. 3.
    Pathak, S. S., Khanna, A. S., Sinha, T. J. M., “Sol-gel derived organic-inorganic hybrid coating: A new era in corrosion protection of material,” Corros. Rew., 24, 281–306 (2006).Google Scholar
  4. 4.
    Wu, K. H., Chao, C. M., Yeh, T. F., Chang, T. C., “Thermal stability and corrosion resistance of polysiloxane coatings on 2024-T3 and 6061-T6 aluminum alloy,” Surf. Coat. Technol., 201, 5782–5788 (2007). doi: 10.1016/j.surfcoat.2006.10.024.CrossRefGoogle Scholar
  5. 5.
    He, J. Y., Zhou, L., Soucek, M. D., Wollyung, K. M., Wesdekmiotis, C., “UV-curable hybrid coatings based on vinylfunctionalized siloxane oligomer and acrylated polyester” J. Appl. Polym. Sci., 105, 2376–2386 (2007). doi: 10.1002/app.25709.CrossRefGoogle Scholar
  6. 6.
    Grundwurmer, M., Nuyken, O., Meyer, M., Wehr, J., Shupl, N., “Sol-gel derived erosion protection coatings against damage caused by liquid impact,” Wear, 263, 318–329 (2007). doi: 10.1016/j.wear.2006.12.039.CrossRefGoogle Scholar
  7. 7.
    Shanaghi, A., Rouhaghdam, A. S., Shahrabi, T., Aliofkhazraei, M., “Study of TiO2 nanoparticle coatings by the sol-gel method for corrosion protection” Mater. Sci., 44, 233–247 (2008). doi: 10.1007/s11003-008-9070-6.CrossRefGoogle Scholar
  8. 8.
    Apohan, N. K., Karatas, S., Bilen, B., Guengoer, A., J. Sol-Gel Sci. Technol., “In situ formed silica nanofiber reinforced UV-curable phenylphosphine oxide containing coatings Volume: 46, 87–97 (2008).CrossRefGoogle Scholar
  9. 9.
    Chang, K. C., Lin, H. F., Lin, C. Y., Kuo, T. H., Huang, H. H., Hsu, S. C., Yeh, J. M., Yang, J. C., Yu, Y. H., “Effect of amino-modified silica nanoparticles on the corrosion protection properties of epoxy resin-silica hybrid materials” J. Nanosci. Nanotechno., 8, 3040–3049 (2008). doi: 10.1166/jnn.2008.086.CrossRefPubMedGoogle Scholar
  10. 10.
    Chau, J. L. H., Tung, C. T., Lin, Y. M., Li A. K., “Preparation and optical properties of titania/epoxy nanocomposite coatings” Mater. Lett. 62, 3416– 3418 (2008). doi: 10.1016/j.matlet.2008.02.058.CrossRefGoogle Scholar
  11. 11.
    Chiang T. H., Liu, S. L., Lee, S. Y., Hsieh T. E., “Preparation, microstructure, and property characterizations of fluorinated polyimide-organosilicate hybrids” Eur. Polym. J., 44, 3482–3492 (2008). doi: 10.1016/j.eurpolymj.2008.08.028.CrossRefGoogle Scholar
  12. 12.
    Fragneaud, B., Masenelli-Varlot, K., Gonzales-Montiel, A., Terrones, M., Cavaille, J. Y. “Mechanical behavior of polystyrene grafted carbon nanotubes/polystyrene nanocomposites: Compos. Sci. Technol., 68, 3265–3271 (2008). doi: 10.1016/j.compscitech.2008.08.013.CrossRefGoogle Scholar
  13. 13.
    Cai, Y., Wu, N., Wei, Q., Zhang, K., Xu, Q., Gao, W., Song, L., Hu, Y., “Structure, surface morphology, thermal and flammability characterizations of polyamide6/organic-modified Fe-montmorillonite nanocomposite fibers functionalized by sputter coating of silicon” Surf. Coat. Tech., 203, 264–270 (2008). doi: 10.1016/j.surfcoat.2008.08.076.CrossRefGoogle Scholar
  14. 14.
    Chavarria, F., Paul, D. R. “Morphology and properties of thermoplastic polyuretane nanocomposites: Effect of organoclay structure” Polymer 47, 7760–7773 (2006). doi: 10.1016/j.polymer.2006.08.067.CrossRefGoogle Scholar
  15. 15.
    Brus, J., Špírková, M., Hlavatá, D., Strachota, A. “Self-organization, structure, dynamic properties and surface morphology of silica/epoxy films as seen by solid-state NMR, SAXS and AFM,” Macromolecules, 37, 1346–1357 (2004). doi: 10.1021/ma035608h.CrossRefADSGoogle Scholar
  16. 16.
    Špírková, M., Brus, J., Hlavatá, D., Kamišová, H., Matějka, L., Strachota, A., “Preparation and characterization of hybrid organic–inorganic epoxide-based films and coatings prepared by sol–gel process,” J. Appl. Polym. Sci., 92, 937–950 (2004). doi: 10.1002/app.13694.CrossRefGoogle Scholar
  17. 17.
    Brus, J., Špírková, M., “NMR spectroscopy and atomic force microscopy characterization of hybrid organic – inorganic coatings”, Macromol. Symp. 220,155–164 (2005). doi: 10.1002/masy.200550212.CrossRefGoogle Scholar
  18. 18.
    Špírková, M., Brožová, L., Strachota, A., Baldrian, J., Urbanová, M., Kotek, J., Strachotová, B., Šlouf, M., “A view from inside onto the surface of self-assembled nanocomposite coatings,” Prog. Org. Coat., 61, 145–155 (2008). doi: 10.1016/j.porgcoat.2007.07.032.CrossRefGoogle Scholar
  19. 19.
    Špírková, M., Strachota, A., Strachotová, B., Urbanová, M., “The effect of montmorillonite on the properties of nanocomposite coatings”, Surf. Eng. 24, 268–271 (2008). doi: 10.1179/174329408X315454.CrossRefGoogle Scholar
  20. 20.
    Špírková, M., Brus, J., Baldrian, J., Šlouf, M., Kotek, J., “Preparation and characterization of hybrid organic-inorganic coatings and films” Surf. Coat. Int. B: Coat. Trans. 88, B4, 237–242 (2005). doi: 10.1007/BF02699578.CrossRefGoogle Scholar
  21. 21.
    EN ISO 4618, 2006, Paints and Varnishes—Terms and DefinitionsGoogle Scholar

Copyright information

© FSCT and OCCA 2009

Authors and Affiliations

  • Milena Špírková
    • 1
    Email author
  • Adam Strachota
    • 1
  • Libuše Brožová
    • 1
  • Jiří Brus
    • 1
  • Martina Urbanová
    • 1
  • Josef Baldrian
    • 1
  • Miroslav Šlouf
    • 1
  • Olga Bláhová
    • 2
  • Petr Duchek
    • 2
  1. 1.Institute of Macromolecular Chemistry AS CR, v. v. i., (IMC AS CR)PragueCzech Republic
  2. 2.Faculty of Mechanical EngineeringUniversity of West Bohemia (UWB)PlzeňCzech Republic

Personalised recommendations