Advertisement

Anticorrosive coatings: a review

  • P. A. Sørensen
  • S. Kiil
  • K. Dam-Johansen
  • C. E. Weinell
Review Paper

Abstract

The main objective of this review is to describe some of the important topics related to the use of marine and protective coatings for anticorrosive purposes. In this context, “protective” refers to coatings for containers, offshore constructions, wind turbines, storage tanks, bridges, rail cars, and petrochemical plants while “marine” refers to coatings for ballast tanks, cargo holds and cargo tanks, decks, and engine rooms on ships. The review aims at providing a thorough picture of state-of-the-art in anticorrosive coatings systems. International and national legislation aiming at reducing the emission of volatile organic compounds (VOCs) have caused significant changes in the anticorrosive coating industry. The requirement for new VOC-compliant coating technologies means that coating manufacturers can no longer rely on the extensive track record of their time-served products to convince consumers of their suitability for use. An important aspect in the development of new VOC-compliant, high-performance anticorrosive coating systems is a thorough knowledge of the components in anticorrosive coatings, their interactions, their advantages and limitations, as well as a detailed knowledge on the failure modes of anticorrosive coatings. This review, which mainly deals with European experience and practice, includes a description of the different environments an anticorrosive coating system may encounter during service. In addition, examples of test methods and standards for determination of the performance and durability of anticorrosive coatings have been included. The different types of anticorrosive coatings are presented, and the most widely applied generic types of binders and pigments in anticorrosive coatings are listed and described. Furthermore, the protective mechanisms of barrier, sacrificial, and inhibitive coatings are outlined. In the past decades, several alternatives to organic solvent-borne coatings have reached the commercial market. This review also presents some of these technologies and discusses some of their advantages and limitations. Finally, some of the mechanisms leading to degradation and failure of organic coating systems are described, and the reported types of adhesion loss are discussed.

Keywords

Anticorrosive coatings Corrosion Accelerated testing Degradation Pigments and binders 

Notes

Acknowledgments

Financial support by J.C. Hempel’s Foundation and The Technical University of Denmark is gratefully acknowledged.

References

  1. 1.
    Koch, G.H., Brongers, M. P. H., Thomson, N.G., Virmani, Y.P., Payer, J.H., (2002) “Corrosion Cost and Preventive Strategies in the United States.” Mater. Performance, 65: 1.Google Scholar
  2. 2.
    Fragata, F., Salai, R.P., Amorin, C., Almeida, E., (2006) “Compatibility and Incompatibility in Anticorrosive Painting - The Particular Case of Maintenance Painting.” Prog. Org. Coat., 56: 257.Google Scholar
  3. 3.
    Pandey, M.D., Nessim, M.A., “Reliability-Based Inspection of Post-Tensioned Concrete Slabs.” Canadian Journal Of Civil Engineering, (1996), 23 242.CrossRefGoogle Scholar
  4. 4.
    Picciotti, M., Picciotti, F., “Selecting Corrosion-Resistant Materials.” Chem. Eng. Prog., 102 (2006), 45.Google Scholar
  5. 5.
    Shipilov, S.A., Le May, I., “Structural Integrity of Aging Buried Pipelines Having Cathodic Protection.” , 13, (2006), 1159. doi: 10.1016/j.engfailanal.2005.07.008 Google Scholar
  6. 6.
    Kouloumbi, N., Ghivalos, L.G., Pantazopoulou, P., “Determination of the Performance of Epoxy Coatings Containing Feldspar Filler.” Pigment & Resin Technology, 34, (2005), 148.Google Scholar
  7. 7.
    Dabral, M., Francis, L.F., Scriven, L.E., “Drying Process Paths of Ternary Polymer Solution Coating.” AlChE J., 48, (2002), 25.Google Scholar
  8. 8.
    Almeida, E., “Surface Treatments and Coatings for Metals. A General Overview.” Ind. Eng. Chem. Res., 40, (2001), 3. doi: 10.1021/ie000209l Google Scholar
  9. 9.
    Elsner, C.I., Cavalcanti, E., Ferraz, O., Di Sarli, A. R., “Evaluation of the Surface Treatment Effect on the Anticorrosive Performance of Paint Systems on Steel.” Prog. Org. Coat., 48, (2003), 50.Google Scholar
  10. 10.
    Santagata, D.M., Sere, P.R., Elsner, C.I., Di Sarli, A. R., “Evaluation of the Surface Treatment Effect on the Corrosion Performance of Paint Coated Carbon Steel.” Prog. Org. Coat., 33, (1998), 44.Google Scholar
  11. 11.
    Narayanan, T. N. S., “Surface Pretreatment by Phosphate Conversion Coatings - A Review.” Rev. Adv. Mater. Sci., 9, (2005), 130.Google Scholar
  12. 12.
    Nguyen, T., Hubbard, J.B., McFadden, G.B., “Mathematical Model for the Cathodic Blistering of Organic Coatings on Steel Immersed in Electrolytes.” J. Protect. Coat. Linings, 63, (1991), 43.Google Scholar
  13. 13.
    Weiss, K.D., “Paint and Coatings: A Mature Industry in Transition.” Prog. Polym. Sci., 22, (1997), 203. doi: 10.1016/S0079-6700(96)00019-6 Google Scholar
  14. 14.
    Greenfield, D, Scantlebury, D, “The Protective Action of Organic Coatings on Steel: A Review.” J. Corros. Sci. Eng., 2 (2000)Google Scholar
  15. 15.
    Walter, G.W., “A Critical Review of the Protection of Metals by Paints.” Corros. Sci., 16, (1986), 39. doi: 10.1016/0010-938X(86)90121-6 Google Scholar
  16. 16.
    ISO 12944. International Standards Organization, Geneve (1998)Google Scholar
  17. 17.
    ISO 9226. International Standards Organization, Geneve (1992)Google Scholar
  18. 18.
    Bardal, E., “Corrosion and Protection”, Springer-Verlag, London, (2005).Google Scholar
  19. 19.
    Pistorius, P.C., Burstein, G.T., “Metastable Pitting Corrosion of Stainless Steel and the Transition to Stability.” Philos. Trans. R. Soc. Lond., A., 341, (1992), 531.ADSGoogle Scholar
  20. 20.
    Husain, A., Al-Shamali, O., Abduljaleel, A., “Investigation of Marine Environmental Related Deterioration of Coal Tar Epoxy Paint on Tubular Steel Pilings.” Desalination, 166, (2004), 295. doi: 10.1016/j.desal.2004.06.084 Google Scholar
  21. 21.
    Appleman, B., “Survey of Accelerated Test Methods for Anti-Corrosive Coating Performance.” J. Coat. Technol., 62, (1990), 57.Google Scholar
  22. 22.
    Knudsen, OO, Steinsmo, U, Bjordal, M, Nijjer, S, “Accelerated Testing: Correlation between Four Accelerated Tests and Five Years of Offshore Field Testing.” J. Protect. Coat. Linings, 52 (2001)Google Scholar
  23. 23.
    Chandler, K.A., “Marine and Offshore Corrosion”, Butterworths, London, (1985).Google Scholar
  24. 24.
    Yebra, D.M., Kiil, S., Dam-Johansen, K., “Antifouling Technology-Past, Present and Future Steps Towards Efficient and Environmentally Friendly Antifouling Coatings.” Prog. Org. Coat., 50, (2004), 75.Google Scholar
  25. 25.
    Jones, D.A., “Principles and Prevention of Corrosion”, Prentice Hall, Upper Saddle River, (1992).Google Scholar
  26. 26.
    Gervasio, D., Song, I., Payer, J.H., “Determination of the Oxygen Reduction Products on ASTM A516 Steel during Cathodic Protection.” J. Appl. Electrochem., 28, (1998), 979. doi: 10.1023/A:1003451418717 Google Scholar
  27. 27.
    Wroblowa, H.S., “Intermediate Products of Atmospheric Oxygen Reduction and the Integrity of the Metal-Organic Coating Interface.” J. Electroanal. Chem., 339, (1992), 31. doi: 10.1016/0022-0728(92)80443-8 Google Scholar
  28. 28.
    Wroblowa, H., Qaderi, S., “Mechanism and Kinetics of Oxygen Reduction on Steel.” J. Electroanal. Chem., 279, (1990), 231. doi: 10.1016/0022-0728(90)85179-9 Google Scholar
  29. 29.
    Brubaker, G.R., Phipps, P.B., (1979) “Corrosion Chemistry”. American Chemical Society, Washington D. C.Google Scholar
  30. 30.
    Baeckmann, W., Schwenk, W., Prinz, W., “Handbook of Cathodic Corrosion Protection”, Butterworth-Heinemann, Oxford, (1997).Google Scholar
  31. 31.
    Kjernsmo, D., Kleven, K., Scheie, J., “Corrosion Protection”, Bording A/S, Copenhagen, (2003).Google Scholar
  32. 32.
    Zhang, R., Chen, H., Cao, H., Huang, C.M., Mallon, P.E., Li, Y., He, Y., Sandreczki, T.C., Jean, Y.C., Ohdaira, T., “Degradation of Polymer Coating Systems Studied by Positron Annihilation Spectroscopy. IV. Oxygen Effect of UV Irradiation.” J. Polym. Sci., 39, (2001), 2035.Google Scholar
  33. 33.
    Pospisil, J, Nespurek, S, “Photostabilization of Coatings. Mechanisms and Performance.” Prog. Polym. Sci., 25–1261 (2000)Google Scholar
  34. 34.
    Sangaj, N.S., Malshe, V.C., “Permeability of Polymers in Protective Organic Coatings.” Prog. Org. Coat., 50, (2004), 28.Google Scholar
  35. 35.
    Hare, C, “Internal Stress-Related Coating System Faílures.” J. Protect. Coat. Linings, 99 (1996)Google Scholar
  36. 36.
    Choy, K.L., “Chemical Vapour Deposition Coatings.” Prog. Mater. Sci., 48, (2001), 57.Google Scholar
  37. 37.
    Wilcox, G.D., Gabe, D.R., “Electrodeposited Zinc Alloy Coatings.” Corros. Sci., 35, (1993), 1251. doi: 10.1016/0010-938X(93)90345-H Google Scholar
  38. 38.
    Hare, C., “Barrier Coatings.” J. Protect. Coat. Linings, 6, (1989), 59.Google Scholar
  39. 39.
    Hare, C., “Anti-Corrosive and Barrier and Inhibitive Primers”, Federation of Societies of Coatings Technology, Philadelphia, (1979).Google Scholar
  40. 40.
    Steinsmo, U., Skari, J.I., “Factors Influencing the Rate of Cathodic Disbonding of Coatings.” Corros. Sci., 50, (1994), 934.Google Scholar
  41. 41.
    Keane, J.D., Wettach, W., Bosh, C., “Minimum Paint Thickness for Economical Protection of Hot-Rolled Steel Against Corrosion.” Journal of Paint Technology, 41, (1969), 372.Google Scholar
  42. 42.
    Sørensen, PA, Kiil, S, Dam-Johansen, K, Weinell, CE, “Influence of Substrate Topography on Cathodic Delamination of Anticorrosive Coatings.” Prog. Org. Coat. (in press). doi: 10.1016/j.porgcoat.2008.08.027
  43. 43.
    US Navy, Engineering and Design: Painting: New Construction and Maintenance, EM 1110-2-3400 (1995)Google Scholar
  44. 44.
    Thomas, N.L., “The Barrier Properties of Paint Coatings.” Prog. Org. Coat., 19, (1991), 101.Google Scholar
  45. 45.
    Dickie, R.A., Smith, A.G., “How Paint arrests Rust.” Chemtech, 10, (1980), 31.Google Scholar
  46. 46.
    Bacon, C.R., Smith, J.J., Rugg, F.G., “Electrolytic Resistance in Evaluating Protective Merit of Coatings on Metals.” Ind. Eng. Chem., 40, (1948), 161. doi: 10.1021/ie50457a041 Google Scholar
  47. 47.
    Kittelberger, W.W., Elm, A.C., “Diffusion of Chloride through Various Paint Systems.” Ind. Eng. Chem. Res., 44, (1952), 326.Google Scholar
  48. 48.
    Munro, J.I., Segall, S., “Cathodic Protectionf Ice Shields on the Norththuberland Strait Confederation Bridge.” Materials Performance, 37, (1998), No. 362.Google Scholar
  49. 49.
    Morgan, J.H., “Cathodic Protection”, NACE, Houston, (1987).Google Scholar
  50. 50.
    Roberge, P.R., “Handbook of Corrosion Engineering”, McGraw-Hill, New York, (1999).Google Scholar
  51. 51.
    Lambourne, R., Strivnes, T.A., “Paint and Surface Coatings - Theory and Practice”, Woodhead, Cambridge, (1999).Google Scholar
  52. 52.
    Rouw, A.C., “Model Epoxy Powder Coatings and their Adhesion to Steel.” Prog. Org. Coat., 34, (1998), 181.Google Scholar
  53. 53.
    Kinsella, E.M., Mayne, J. E. O., “Ionic Conduction in Polymer Films, I: Influence of Electrolyte on Resistance.” Br. Polym. J., 1, (1969), 173.Google Scholar
  54. 54.
    Funke, W., “Towards Environmentally Acceptable Corrosion Protection by Organic Coating Problems and Realization.” J. Coat. Technol., 55, (1983), 31.Google Scholar
  55. 55.
    Mayne, JEO, Scantlebury, JD, “Ionic Conduction in Polymer Films. II. Inhomogeneous Structure of Varnish Films.” Br. Polym. J., 6 240 (1970)Google Scholar
  56. 56.
    Ritter, J.J., Rodriguez, M.J., “Corrosion Phenomena for Iron Covered with a Cellulose Nitrate Coating.” Corrosion, 38 (1982), 223.Google Scholar
  57. 57.
    Kinsella, E.M., Mayne, J. E. O., Scantlebury, J.D., “Ionic Conduction in Polymer Films, III: Influence of Temperature on Water Absorption.” Br. Polym. J., 3, (1971), 41.Google Scholar
  58. 58.
    Mayne, J. E. O., Mills, D.J., “The Effect of the Substrate on the Electrical Resistance of Polymer Films.” J. Oil Color Chem. Assoc., 58, (1975), 155.Google Scholar
  59. 59.
    Vilche, J.R., Bucharsky, E.C., Guidice, C., “Application of EIS and SEM to Evaluate the Influence of Pigment Shape and Content in ZRP Formulation on the Corrosion Prevention of Naval Steel.” Corros. Sci., 44, (2002), 1287. doi: 10.1016/S0010-938X(01)00144-5 Google Scholar
  60. 60.
    Hare, C, Steele, M, Collins, SP, “Zinc Loadings, Cathodic Protection, and Post-Cathodic Protective Mechanisms in Organic Zinc-Rich Metal Primers.” J. Protect. Coat. Linings, 54 (2001)Google Scholar
  61. 61.
    Feliu, S., Barajas, R., Bastidas, J.M., Morcillo, M., “Mechanism of Cathodic Protection of Zinc-Rich Paints by Electrochemical Impedance Spectroscopy. 1. Galvanic Stage.” J. Coat. Technol., 61, (1989), 63.Google Scholar
  62. 62.
    Feliu, S., Barajas, R., Bastidas, J.M., Morcillo, M., “Mechanism of Cathodic Protection of Zinc-Rich Paints by Electrochemical Impedance Spectroscopy. 2. Barrier Stage.” J. Coat. Technol., 61, (1989), 71.Google Scholar
  63. 63.
    Svoboda, M, Proceedings of the XXXI International Conference on KNH, p. 5, 2000Google Scholar
  64. 64.
    Ruf, J, Korrosion Schutz durch Lacke und Pigmente, Verlag W. A. Colomb (2000)Google Scholar
  65. 65.
    Cohen, M., “The Breakdown and Repair of Inhibitive Films in Neutral Solution.” Corrosion, 32, (1976), 12.Google Scholar
  66. 66.
    Romagnoli, R., Vetere, V.F., “Heterogeneous Reaction Between Steel and Zinc Phosphate.” Corrosion, 51, (1995), 116.CrossRefGoogle Scholar
  67. 67.
    Meng, Q, Ramgopal, T, Frankel, GS, “The Influence of Inbibitor Ions on Dissolution Kinetics of Al and Mg Using the Artificial Crevice Technique.” Electrochem. Solid-State Lett., 5 B1 (2002). doi: 10.1149/1.1429542
  68. 68.
    Rafey, S. A. M., Abd El Rehim, S. S., “Inhibition of Chloride Pitting Corrosion of Tin in Alkaline and Near Neutral Medium by Some Inorganic Anions.” Electrochim. Acta, 42, (1996), 667.Google Scholar
  69. 69.
    Schmucki, P., Virtanen, S., Isaacs, H.S., Ryan, M.P., Davenport, A.J., Böhni, H., Stenberg, T., “Electrochemical Behavior of Cr2O3/Fe2O3 Artificial Passive Films Studied by In Situ XANES.” J. Electrochem. Soc., 145, (1998), 791. doi: 10.1149/1.1838347 Google Scholar
  70. 70.
    Sakashita, M., Sato, N., “The Effect of Molybdate Anion on the Ion-Selectivity of Hydous Ferric Oxide Films in Chloride Solutions.” Corros. Sci., 17, (1977), 473. doi: 10.1016/0010-938X(77)90003-8 Google Scholar
  71. 71.
    Buchler, M., Schmucki, P., Böhni, H., “Iron Passivity in Borate Buffer.” J. Electrochem. Soc., 145, (1998), 609. doi: 10.1149/1.1838311 Google Scholar
  72. 72.
    Sinko, J., “Challenges of Chromate Inhibitor Pigments Replacement in Organic Coatings.” Prog. Org. Coat., 42, (2001), 267.Google Scholar
  73. 73.
    Rammelt, U., Reinhard, G., “Characterization of Active Pigments in Damage of Organic Coatings on Steel by Means of Electrochemical Impedance Spectroscopy.” Prog. Org. Coat., 24, (1994), 309.Google Scholar
  74. 74.
    Prosek, T., Thierry, D., “A Model for the Release of Chromate from Organic Coatings.” Prog. Org. Coat., 49 (2004), 209.Google Scholar
  75. 75.
    Liu, W.M., “Efficiency of barrier-effect and inhibitive anti-corrosion pigments in primers.” Mater. Corros., 49, (1998), 576.Google Scholar
  76. 76.
    Mitchell, MJ, Summers, M, “How to Select Zinc Silicate Primers.” Protect. Coat. Eur. J., 12 (2001)Google Scholar
  77. 77.
    Mitchell, MJ, “Zinc Silicate or Zinc Epoxy as the Preferred High Performance Primer,” International Corrosion Conference, South Africa, 1999Google Scholar
  78. 78.
    Undrum, H., “Superior Protection - Silicate and Epoxy Zinc Primers.” Surf. Coat. Aus., 44, (2007), 14.Google Scholar
  79. 79.
    Guglielmi, M., “Sol–Gel Coatings on Metals.” J. Sol–Gel Sci. Technol., 8, (1997), 443.Google Scholar
  80. 80.
    Ballard, R.L., Williams, J.P., Njus, J.M., Kiland, B.R., Soucek, M.D., “Inorganic-Organic Hybrid Coatings with Mixed Metal Oxides.” Eur. Polym. J., 37, (2001), 381. doi: 10.1016/S0014-3057(00)00105-1 Google Scholar
  81. 81.
    Schottner, G., “Hybrid Sol–Gel-Derived Polymers: Applications of Multifunctional Materials.” Chem. Mater., 342213, (2001), 3422. doi: 10.1021/cm011060m Google Scholar
  82. 82.
    Kasemann, R., Schmidt, H., “Coatings for Mechanical and Chemical Protection Based on Organic-Inorganic Sol–Gel Nanocomposites.” New Journal of Chemistry, 18, (1994), 1117.Google Scholar
  83. 83.
    Zheludkevich, M.L., Serra, R., Montemor, M.F., Yasakau, K.A., Salvado, I. M. M., Ferreira, M. G. S., “ Nanostructured Sol–Gel Coatings Doped with Cerium Nitrate as Pre-Treatments for AA2024-T3 - Corrosion Protection Performance.” Electrochim. Acta, 51, (2005), 208. doi: 10.1016/j.electacta.2005.04.021 Google Scholar
  84. 84.
    Voevodin, N.N., Grebasch, N.T., Soto, W.S., Kasten, L.S., Grant, J.T., Arnold, F.E., Donley, M.S., “An Organically Modified Zirconate Film as a Corrosion Resistant Treatment for Aluminum 2024-T3.” Prog. Org. Coat., 41, (2001), 287.Google Scholar
  85. 85.
    Messaddeq, S.H., Pulcinelli, S.H., Santilli, C.V., Guastaldi, A.C., Messaddeq, Y., “Microstructure and Corrosion Resistance of Inorganic-Organic (ZrO2-PMMA) Hybrid Coating on Stainless Steel.” J. Non-Cryst. Solids, 247, (1999), 164. doi: 10.1016/S0022-3093(99)00058-7 ADSGoogle Scholar
  86. 86.
    Schmidt, H., Jonschker, G., Goedicke, S., Menning, M., “The Sol–Gel Process as a Basic Technology for Nanoparticle-Dispersed Inorganic-Organic Composites.” J. Sol–Gel Sci. Technol., 19, (2000), 39. doi: 10.1023/A:1008706003996 Google Scholar
  87. 87.
    Hofacker, S., Metchel, M., Mager, M., Kraus, H., “Sol–Gel: A New Tool for Coatings Chemistry.” Prog. Org. Coat., 45, (2002), 159.Google Scholar
  88. 88.
    Seok, S.I., Kim, J.H., Choi, K.H., Hwang, Y.Y., “Preparation of Corrosion Protective Coatings on Galvanized Iron from Aqueous Inorganic-Organic Hybrid Sols by Sol–Gel Method.” Surf. Coat. Technol., 200, (2006), 3468.Google Scholar
  89. 89.
    Pathak, S.S., Khanna, A.S., M. Sinha, T. J., “Sol Gel Derived Organic-Inorganic Hybrid Coating: A New Era in Corrosion Protection of Material.” Corros. Rev., 24, (2006), 281.Google Scholar
  90. 90.
    Zheludkevich, M.L., Serra, R., Montemor, M.F., Salvado, I. M. M., Ferreira, M. G. S., “Corrosion Protective Properties of Nanostructured Sol–Gel Hybrid Coatings to AA2024-T3.” Surf. Coat. Technol., 200, (2006), 3084.Google Scholar
  91. 91.
    Appleman, B., “Predicting Exterior Marine Performance of Coatings from Salt Fog: Two Types of Errors.” J. Protect. Coat. Linings, 9, (1992), 134.Google Scholar
  92. 92.
    Rasmussen, SN, “Corrosion Protection of Offshore Windturbines,” Chicago, 2004 Google Scholar
  93. 93.
    Rasmussen, SN, “Corrosion Protection with Coatings—Will Pre-Qualification Testing Improve Performance?,” 2006Google Scholar
  94. 94.
    Bierwagen, G., Tallman, D., Li, J., He, L., Jeffcoate, C., “EIS Studies of Coated Metal in Accelerated Exposure.” Prog. Org. Coat., 46, (2003), 148.Google Scholar
  95. 95.
    Mansfeld, F., Tsai, C.H., “Determination of Coating Deterioration with EIS. I. Basic Relationships.” Corrosion, 47, (1991), 958.Google Scholar
  96. 96.
    van Westing, E. P. M., Ferrari, G.M., Dewitt, J. H. W., “The Determination of Coating Performance with Impedance Measurements.” Corros. Sci., 34, (1993), 1511.Google Scholar
  97. 97.
    van Westing, E. P. M., Ferrari, G.M., Dewit, J. H. W., “The Determination of Coating Performance with Impedance Measurements - II Water Uptake of Coatings.” Corros. Sci., 36 (1994), 957.Google Scholar
  98. 98.
    van Westing, E. P. M., Ferrari, G.M., de Wit, J. H., “The Determination of Coating Performance with Impedance Measurements-IV. Protective Mechanisms of Anticorrosion Pigments.” Corros. Sci., 36, (1994), 1323.Google Scholar
  99. 99.
    van Westing, E. P. M., Ferrari, G.M., Geenen, F.M., Dewit, J. H. W., “In-Situ Determination of Adhesion Loss.” Prog. Org. Coat., 23, (1993), 89.Google Scholar
  100. 100.
    Mansfeld, F., “Evaluation of Localized Corrosion Phenomena with Electrochemical Impedance Spectroscopy (EIS) and Electrochemical Noise Analysis (ENA).” J. Appl. Electrochem., 25, (1995), 187.Google Scholar
  101. 101.
    Hu, J., Zhang, J., Zhang, J., Cao, C., “A Novel Method for Determination of Diffusion Coefficients of Corrosive Species in Organic Coatings by EIS.” J. Mater. Sci., 39, (2004), 4475.ADSGoogle Scholar
  102. 102.
    Hinderliter, B.R., Croll, S.G., Tallman, D.E., Su, Q., Bierwagen, G.P., “EIS Studies of Coated Metal in Accelerated Exposure.” Electrochim. Acta, 51, (2006), 4505.Google Scholar
  103. 103.
    Hu, J.M., Zhang, J.Q., Cao, C.N., “Determination of Water Uptake and Diffusion of Cl- Ion in Epoxy Primer on Aluminum Alloyes in NaCl Solution by Electrochemical Impedance Spectroscopy.” Prog. Org. Coat., 46, (2003), 273.Google Scholar
  104. 104.
    De Rosa, L., Monetta, T., Bellucci, F., “Moisture Uptake in Organic Coatings Monitored with EIS.” Mater. Sci. Forum, 289–292, (1998), 315.Google Scholar
  105. 105.
    Zhang, J., Hu, J., Zhang, J., Cao, C., “Studies of Water Transport Behaviour and Impedance Models of Epoxy Coated Metals in NaCl Solutions by EIS.” Prog. Org. Coat., 51, (2004), 145.Google Scholar
  106. 106.
    Deflorian, F., Rossi, S., “An EIS Study of Ion Diffusion through Organic Coatings.” Electrochim. Acta, 51, (2006), 1736.Google Scholar
  107. 107.
    ISO 16733-2. International Standards Organization (2007)Google Scholar
  108. 108.
    Skerry, B.S., Eden, D.A., “Electrochemical Testing to Assess Corrosion Protective Coatings.” Prog. Org. Coat., 15, (1987), 269.Google Scholar
  109. 109.
    Chen, C.T., Skerry, B.S., “Assessing the Corrosion Resistance of Painted Steel by AC Impedance and Electrochemical Noise Techniques.” Corrosion, 47, (1991), 598.Google Scholar
  110. 110.
    Le Thu, Q., Bierwagen, G.P., Touzain, S., “EIS and ENM Measurements for Three Organic Coatings on Aluminum.” Prog. Org. Coat., 42, (2001), 179.Google Scholar
  111. 111.
    Mills, D., Mabbutt, S., “Investigation of Defects in Organic Anti-Corrosive Coatings using Electrochemical Noise Measurement.” Prog. Org. Coat., 39, (2000), 41.Google Scholar
  112. 112.
    Mills, D., Mabbutt, S., Bierwagen, G., “Investigation Into Mechanism of Protection of Pigmented Alkyd Coatings Using Electrochemical and other Methods.” Prog. Org. Coat., 46, (2003), 163.Google Scholar
  113. 113.
    Xiao, H., Mansfeld, F., “Evaluation of Coating Degradation with Electrochemical Impedance Spectroscopy and Electrochemical Noise Analysis.” J. Electrochem. Soc., 141, (1994), 2332.Google Scholar
  114. 114.
    Mansfeld, F., Han, L.T., Lee, C.C., Chen, C., Zhang, G., Xiao, H., “Analysis of Electrochemical Impedance and Noise Data for Polymer Coated Metals.” Corros. Sci., 39, (1997), 255.Google Scholar
  115. 115.
    Metikos-Hukovic, M., Loncar, M., Zevnik, G., “Monitoring the electrochemical potential noise produced by coated metal electrodes.” Mater. Corros., 40, (1989), 494.Google Scholar
  116. 116.
    Jeyaprabha, C., Muralidharan, S., Venkatachari, G., Raghavan, M., “Applications of Electrochemical Noise Measurements in Corrosion Studies: A Review.” Corros. Rev., 19, (2001), 301.Google Scholar
  117. 117.
    Kearns, JR, Scully, JR, Roberge, PR, Reichert, DL, Dawson, JL, Electrochemical Noise Measurements for Corrosion Applications. American Society for Testing and Materials, West Conshohocken (1996)Google Scholar
  118. 118.
    Leng, A., Streckel, H., Stratmann, M., “The Delamination of Polymeric Coatings from Steel. Part 1. Calibration of the Kelvinprobe and Basic Delamination Mechanism.” Corros. Sci., 41, (1999), 547.Google Scholar
  119. 119.
    Leng, A., Streckel, H., Stratmann, M., “The Delamination of Polymeric Coatings from Steel. Part 2: First stage of Delamination, Effect of Type and Concentration of Cations on Delamination, Chemical Analysis of the Interface.” Corros. Sci., 41, (1999), 579.Google Scholar
  120. 120.
    Leng, A., Streckel, H., Stratmann, M., “The Delamination of Polymeric Coatings from Steel. Part 3: Effect of the Oxygen Partial Pressure on the Delamination Reaction and Current Distribution at the Metal/Polymer Interface.” Corros. Sci., 41, (1999), 599.Google Scholar
  121. 121.
    Furbeth, W., Stratmann, M., “The Delamination of Polymeric Coatings from Electrogalvanized Steel - A Mechanistic Approach. Part 2: Delamination from a Defect down to Steel.” Corros. Sci., 43, (2001), 229.Google Scholar
  122. 122.
    Stratmann, M., Feser, R., Leng, A., “Corrosion Protection by Organic Films.” Electrochim. Acta, 39, (1993), 1207.Google Scholar
  123. 123.
    Reddy, B., Sykes, J.M., “Degradation of Organic Coatings in a Corrosive Environment: A Study by Scanning Kelvin Probe and Scanning Acoustic Microscope.” Prog. Org. Coat., 52, (2005), 280.Google Scholar
  124. 124.
    Reddy, B., Doherty, M.J., Sykes, J.M., “Breakdown of Organic Coatings in Corrosive Environments Examined by Scanning Kelvin Probe Acoustic Microscopy.” Electrochim. Acta, 49, (2004), 2965.Google Scholar
  125. 125.
    Wapner, K., Stratmann, M., Grundmeier, G., “In Situ Infrared Spectroscopy and Scanning Kelvin Probe Measurements of Water and Ion Transport at the Polymer/Metal Interfaces.” Electrochim. Acta, 51, (2006), 3303.Google Scholar
  126. 126.
    Wicks, D.A., Bach, H., “The Coming Revolution for Coatings Science: High Throughput Screening for Formulations.” Coatings World, 7, (2002), 38.Google Scholar
  127. 127.
    Pilcher, G.R., “Meeting the Challenge of Radical Change: Coatings R&D as We Enter the 21st Century.” J. Coat. Technol., 73, (2001), 135.Google Scholar
  128. 128.
    Kiil, S., Weinell, C.E., Pedersen, M.S., Dam-Johansen, K., “Analysis of Self-Polishing Paints Using Rotary Experiments and Mathematical Modelling.” Ind. Eng. Chem. Res., 40, (2001), 3906.Google Scholar
  129. 129.
    Kiil, S., Weinell, C.E., Pedersen, M.S., Dam-Johansen, K., “Mathematical Modelling of a Selfpolishing Antifouling Paint Exposed to Seawater – A Parameter Study.” Chem. Eng. Res. Dev, 80, (2002), 45.Google Scholar
  130. 130.
    Kiil, S., Dam-Johansen, K., Weinell, C.E., Pedersen, M.S., Codolar, S.A., “Dynamic Simulations of a Self-Polishing Antifouling Paint Exposed to Seawater.” J. Coat. Technol., 74, (2002), 89.Google Scholar
  131. 131.
    Kiil, S., Weinell, C.E., Pedersen, M.S., Dam-Johansen, K., “Seawater soluble Pigments and their Potential use in Self-Polishing Antifouling Paints: Simulation based Screening Tool.” Prog. Org. Coat., 45, (2002), 423.Google Scholar
  132. 132.
    Yebra, D.M., Kiil, S., Dam-Johansen, K., Weinell, C.E., “Mathematical Modelling of Tin-Free Chemically-Active Antifouling Paint Behaviour.” AlChE J., 52, (2006), 1926.Google Scholar
  133. 133.
    Zisman, W.A., “Advances in Chemistry Series 43”, Am. Chem. Soc., Washington, (1964).Google Scholar
  134. 134.
    Sell, P.J., Neumann, A.W., “Surface Tension of Solids.” Angew. Chem., 78, (1966), 321.Google Scholar
  135. 135.
    Fowkes, F.M., “Attractive Forces at Interfaces.” Ind. Eng. Chem., 56, (1966), 40.ADSGoogle Scholar
  136. 136.
    Kaelble, D.H., Uy, K.C., “A Reinterpretation of Organic Liquid-Polytetrafluoroethylene Surface Interactions.” J. Adhes., 2, (1970), 50.Google Scholar
  137. 137.
    Owens, D.K., Wendt, R.C., “Estimation of the Surface Free Energy of Polymers.” J. Appl. Polym. Sci., 13, (1969), 1741.Google Scholar
  138. 138.
    Young, T., “An Essay on the Cohesion of Fluids.” Trans. Roy. SoC., 95, (1805), 65.Google Scholar
  139. 139.
    Fowkes, F.M., “Physiochemical Aspects of Polymer Surfaces”, Plenum Press, New York, (1983).Google Scholar
  140. 140.
    Bolger, J.C., “Adhesion Aspects of Polymer Coatings”, Plenum Press, New York, (1983).Google Scholar
  141. 141.
    Sere, P.R., Armas, A.R., Elsner, C.I., Di Sarli, A. R., “The Surface Condition Effect on Adhesion and Corrosion Resistance of Carbon Steel Chlorinated Rubber Artificial Sea Water Systems.” Corros. Sci., 38, (1996), 853.Google Scholar
  142. 142.
    Fahlman, M., Jasty, S., Epstein, A.J., “Corrosion Protection of Iron/Steel by Emeraldine Base Polyaniline: An X-Ray Photoelectron Spectroscopy Study.” Synth. Met., 85, (1997), 1323.Google Scholar
  143. 143.
    Glazer, J., “Monolayer Studies of Some Ethoxylin Resin Adhesives and Related Compounds.” J. Polym. Sci., 13, (1954), 355.ADSGoogle Scholar
  144. 144.
    Nakazawa, M., Somorjai, G.A., “Adsorption of Substituted Benzenes on Polycrystalline Gold and on Zinc and Iron Oxide Overlayers.” Appl. Surf. Sci., 68, (1993), 517.ADSGoogle Scholar
  145. 145.
    Nakazawa, M., Somorjai, G., “A Study of the Adsorption of Selected Organic Molecules to Model the Adhesion of Epoxy Resins: Thermal Desorption of Glycidyl and Phenoxy Compounds from Gold, Iron Oxide and Zinc Oxide.” Appl. Surf. Sci., 68, (1993), 539.ADSGoogle Scholar
  146. 146.
    Nakazawa, M., Somorjai, G., “Coadsorption of Water and Selected Aromatic Molecules to Model the Adhesion of Epoxy Resins on Hydrated Surfcaes of Zinc and Iron Oxide.” Appl. Surf. Sci., 84, (1994), 309.Google Scholar
  147. 147.
    Nakazawa, M, “Mechanism of Adhesion of Epoxy Resin to Steel Surface.” Nippon Steel Technical Report 63, p. 16 (1994)Google Scholar
  148. 148.
    Hare, C., “Good Painting Practice Steel Structures Painting Manual”. Steel Structues Painting Council, Pittsburg, (1995).Google Scholar
  149. 149.
    Momber, AW, Greverath, WD, “Surface Preparation Standards for Steel Substrates—A Critical Review.” J. Protect. Coat. Linings, 48 (2004)Google Scholar
  150. 150.
    Momber, AW, Koller, S, Dittmers, HJ, “Effects of Surface Preparation Methods on Adhesion of Organic Coatings to Steel Substrates.” J. Protect. Coat. Linings, 44 (2004)Google Scholar
  151. 151.
    Knapp, J.K., Taylor, T.A., “Waterjet Roughened Surface Analysis and Bond Strength.” Surf. Coat. Technol., 86, (1996), 22.Google Scholar
  152. 152.
    Momber, A.W., Koller, S., “How Surface Preparation Methods Affect Delamination in Ballast Tanks.” J. Protect. Coat. Linings, 25 (2008), 43.Google Scholar
  153. 153.
    Sathyanarayna, M.N., Yaseen, M., “Role of Promoters in Improving Adhesion of Organic Coatings to a Substrate.” Prog. Org. Coat., 26, (1995), 275.Google Scholar
  154. 154.
    Schrieber, H.P., Qin, R.Y., Sengupta, A., “The Effectiveness of Silane Adhesion Promoters in the Performance of Polyurethane Adhesives.” J. Adhes., 68, (1998), 31.Google Scholar
  155. 155.
    Pettrie, EM, Handbook of Adhesives and Sealants. McGraw-Hill (2000)Google Scholar
  156. 156.
    Kouloumbi, N., Ghivalos, L.G., Pantazopoulou, P., “Effect of Quartz Filler on Epoxy Coatings Behavior.” J. Mater. Eng. Perform., 12, (2003), 135.Google Scholar
  157. 157.
    Almeida, E., Santos, D., Uruchurtu, J., “Corrosion Performance of Waterborne Coatings for Structural Steel.” Prog. Org. Coat., 37 (1999), 131.Google Scholar
  158. 158.
    Topcuoglu, O., Altinkaya, S.A., Balkose, D., “Characterization of Waterborne Acrylic Based Paint Films and Measurement of their Water Vapor Permeability.” Prog. Org. Coat., 56, (2006), 269.Google Scholar
  159. 159.
    Galliano, F., Landolt, D., “Evaluation of Corrosion Protection Properties of Additives for Waterbrone Epoxy Coatings on Steel.” Prog. Org. Coat., 44, (2002), 217.Google Scholar
  160. 160.
    Kiil, S., “Drying of Latex Films and Coatings: Reconsidering the Fundamental Mechanisms.” Prog. Org. Coat., 57, (2006), 236.Google Scholar
  161. 161.
    Schwartz, J., “The Importance of Low Dynamic Surface Tension in Water-Borne Coatings.” J. Coat. Technol., 64, (1992), 65.Google Scholar
  162. 162.
    Broek, A.D., “Environmental Friendly Paints. Their Technical (Im)possibilities.” Prog. Org. Coat., 22, (1993), 55.Google Scholar
  163. 163.
    Gaschke, M., Dreher, B., “Review of Solvent-Free Liquid Epoxy Coating Technology.” J. Coat. Technol., 48, (1976), 46.Google Scholar
  164. 164.
    Daniels, E.S., Klein, A., “Development of Cohesive Strength in Polymer Films from Latices: Effect of Polymer Chain Interdiffusion and Crosslinking.” Prog. Org. Coat., 19, (1991), 359.Google Scholar
  165. 165.
    Oichi, M., Takamiy, K., Kiyohara, O., Nakanishi, T., “Effect of the Addition of Aramid-Silicone Block Copolymer on Phase Structure and Toughness of Cured Epoxy Resins Modified with Silicone.” Polymer, 39, (1998), 725.Google Scholar
  166. 166.
    Bhatnagar, M.S., “Epoxy-Resins from 1980 to Date.” Polymer-Plast Technology Engineering, 32, (1993), 53.Google Scholar
  167. 167.
    Salem, LS, “Epoxies for Steel.” J. Protect. Coat. Linings, 77 (1996)Google Scholar
  168. 168.
    Levita, G., De Petris, S., Marchetti, A., Lazzeri, A., “Crosslink Density and Fracture Toughness of Epoxy Resins.” J. Mater. Sci., 6, (1991), 2348.ADSGoogle Scholar
  169. 169.
    Vecera, M., Mleziva, J., “The Influence of the Molecular Structure on the Chemical Resistivity of Solventless and High-Solid Epoxy Resins.” Prog. Org. Coat., 26, (1995), 251.Google Scholar
  170. 170.
    Di Benedetto, M., “Multifunctional Epoxy-Resins come of Age.” J. Coat. Technol., 52, (1980), 65.Google Scholar
  171. 171.
    Atta, A.M., Mansour, R., Abdou, M.I., Sayed, A.M., “Epoxy Resins from Rosin Acids: Synthesis and Characterization.” Polym. Adv. Technol., 15, (2004), 514.Google Scholar
  172. 172.
    Wegmann, A., “Novel Waterborne Epoxy Resin Emulsion.” J. Coat. Technol., 65, (1993), 27.Google Scholar
  173. 173.
    Miskovic-Stankovic, V.B., Drazic, D.M., Teodorovic, M.J., “Electrolyte Penetration Through Epoxy Coatings Electrodeposited on Steel.” Corros. Sci., 37, (1995), 241.Google Scholar
  174. 174.
    Miskovic-Stankovic, V.B., Zotovic, J.B., Kacarevic-Popovic, Z., Maksimovic, M.D., “Corrosion Behaviour of Epoxy Coatings Electrodeposited on Steel Electrochemically Modified by Zn-Ni Alloy.” Electrochim. Acta, 44, (1999), 4269.Google Scholar
  175. 175.
    Almeida, E., Santos, D., Fragata, F., de la Fuente, D., Morcillo, M., “Anticorrosive Painting for a Wide Spectrum of Marine Atmospheres: Environmental-Friendly versus Traditional Paint Systems.” Prog. Org. Coat., 57, (2006), 11.Google Scholar
  176. 176.
    Carretti, E., Dei, L., “Physicochemical Characterization of Acrylic Polymeric Resins Coating Porous Materials of Artistic Interest.” Prog. Org. Coat., 49, (2004), 282.Google Scholar
  177. 177.
    Ahmad, S., Ashraf, S.M., Hassan, S.N., Hasnat, A., “Synthesis, Characterization, and Performance Evaluation of Hard, Anticorrosive Coating Materials Derived from Diglycidyl Ether of Bisphenol A Acrylates and Methacrylates.” J. Appl. Polym. Sci., 95, (2005), 494.Google Scholar
  178. 178.
    Samuelsson, J., Sundell, P.E., Johansson, M., “Synthesis and Polymerization of a Radiation Curable Hyperbranched Resin Based on Epoxy Functional Fatty Acids.” Prog. Org. Coat., 59, (2004), 193.Google Scholar
  179. 179.
    Lide, D.R., “CRC Handbook of Chmestry and Physics”, Taylor and Francis, Boca Raton, (2007).Google Scholar
  180. 180.
    Ahmad, S., Gupta, A.P., Sharmin, E., Alam, M., Pandey, S.K., “Synthesis, Characterization and Development of High-Performance Siloxane-Modified Epoxy Paints.” Prog. Org. Coat., 54, (2005), 248.Google Scholar
  181. 181.
    Munger, C.G., “The Chemistry of Zinc Silicate Coatings.” Corrosion Prevention & Control, 41, (1994), 140.Google Scholar
  182. 182.
    Socha, R.P., Pommier, N., Fransaer, J., “Effect of Deposition Conditions on the Formation of Silica-Silicate Thin Films.” Surf. Coat. Technol., 201, (2007), 5960.Google Scholar
  183. 183.
    Parashara, G., Srivastavab, D., Kumar, P., “ Ethyl silicate binders for high performance coatings.” Prog. Org. Coat., 42, (2001), 1.Google Scholar
  184. 184.
    Aigbodion, A.I., Okieimen, F.E., Obazee, E.O., Bakare, I.O., “Utilization of Maleinized Rubber Seed Oil and Its Alkyd Resin as Binders in Water-Borne Coatings.” Prog. Org. Coat., 46, (2003), 28.Google Scholar
  185. 185.
    Wicks, ZW, Jones, FN, Pappas, PS, Wicks, DA, Organic Coatings: Science and Technology. Wiley (1999)Google Scholar
  186. 186.
    van Gorkum, R., Bouwman, E., “The Oxidative Drying of Alkyd Paint Catalyzed by Metal Complexes.” Coord. Chem. Rev., 249 (2005), 1709.Google Scholar
  187. 187.
    Howarth, G.A., “Polyurethanes, Polyurethane Dispersions and Polyureas: Past, Present and Future.” Surf. Coat. Int., 86, (2003), 111.Google Scholar
  188. 188.
    Chattopadhyay, D.K., Raju, K. V .S. N., “Structural Engineering of Polyurethane Coatings for High Performance Applications.” Prog. Polym. Sci., 32, (2007), 352.Google Scholar
  189. 189.
    Allen, K.W., Hutchinson, A.R., Pagliuca, A., “A Study of the Curing of Sealants used in Building Construction.” Int. J. Adhes. Adhes., 14, (1994), 117.Google Scholar
  190. 190.
    Coogan, R.G., “Post-Crosslinking of Water-Borne Urethanes.” Prog. Org. Coat., 32, (1997), 51.ADSGoogle Scholar
  191. 191.
    Hurst, N.W., Jones, T.A., “A Review of Products Evolved from Heated Coal, Wood and PVC.” Fire and Materials, 9, (1985), 1.Google Scholar
  192. 192.
    Glass, G.K., Reddy, B., Buenfeld, N.R., “Corrosion Inhibition in Concente Arising from Its Acid Neutralisation Capacity.” Corros. Sci., 42, (2000), 1587.Google Scholar
  193. 193.
    Skerry, B.S., Chen, C.T., Ray, C.J., “Pigment Volume Concentration and Its Effect on the Corrosion Resistance Properties of Organic Paint Films.” J. Coat. Technol., 46, (1992), 77.Google Scholar
  194. 194.
    Yang, L.H., Liu, F.C., Han, E.H., “Effect of P/B on the Properties of Anticorrosive Coatings with Different Particle Size.” Prog. Org. Coat., 53, (2005), 91.Google Scholar
  195. 195.
    Bierwagen, G.P., “Critical Pigment Volume Concentration(CPVC) as a Transition Point in the Properties of Coatings.” J. Coat. Technol., 64, (1992), 71.Google Scholar
  196. 196.
    Asbeck, W.K., van Loo, M., “Critical Pigment Volume Relationships.” Ind. Eng. Chem. Res., 41, (1949), 1470.Google Scholar
  197. 197.
    Bierwagen, G.P., Rich, D.C., “The Critical Pigment Volume Concentration in Latex Coatings.” Prog. Org. Coat., 11, (1983), 339.Google Scholar
  198. 198.
    Braunshausen, R.W., Baltrus, R.A., Debolt, L., “A Review of Methods of CPVC Determination.” J. Coat. Technol., 64, (1992), 51.Google Scholar
  199. 199.
    Stieg, F.B., “Density Method for Determinating the CPVC of Flat Latex Paints.” J. Coat. Technol., 55, (1983), 111.Google Scholar
  200. 200.
    Hesler, K.K., (1978) “Practical technique for the CPVC determination of titanium dioxide-containing latex paint systems.” J. Coat. Technol. 50:57.Google Scholar
  201. 201.
    del Rio, G., Rudin, A., “Latex Particle Size and CPVC.” Prog. Org. Coat., 28, (1996), 259.Google Scholar
  202. 202.
    Schaller, E.J., “Critical Pigment Volume Concentration of Emulsion Based Paints.” J. Paint Technol., 40, (1968), 433.Google Scholar
  203. 203.
    Khorassani, M., Pourmahdian, S., Afshar-Teromi, F., Nourhani, A., “Estimation of Critical Volume Concentration in Latex Paint Systems using Gas Permeation.” Iranian Polymer Journal, 14, (2005), 1000.Google Scholar
  204. 204.
    Liu, B., Li, Y., Lin, H., Cao, C., “Effect of PVC on the Diffusion Behaviour of Water through Alkyd Coatings.” Corros. Sci., 44, (2002), 2657.Google Scholar
  205. 205.
    Rodriguez, M.T., Gracenea, J.J., Kudama, A.H., Suay, J.J., “The Influence of Pigment Volume Concentration (PVC) on the Properties of an Epoxy Coating Part I: Thermal and Mechanical Properties.” Prog. Org. Coat., 50, (2004), 62.Google Scholar
  206. 206.
    Rodriguez, M.T., Gracenea, J.J., Saura, J.J., Suay, J.J., “The Influence of Pigment Volume Concentration (PVC) on the Properties of an Epoxy Coating Part II. Anticorrosion and Economic Properties.” Prog. Org. Coat., 50, (2004), 68.Google Scholar
  207. 207.
    Hare, C., “Protective Coatings: Fundamentals of Chemistry and Composition”, Technology Publishing, Pittsburg, (1994).Google Scholar
  208. 208.
    Carter, E., “Recent Developments in Micaceous Iron Oxide (MIO) Coatings.” J. Oil Color Chem. Assoc., 69, (1986), 100.Google Scholar
  209. 209.
    Wiktorek, S., “Micaceous Iron-Oxide in Protective Coatings.” J. Oil Color Chem. Assoc., 66, (1983), 164.Google Scholar
  210. 210.
    Carter, E., “Synthetic Micaceous Iron Oxide: A New Anticorrosive Pigment.” J. Oil and Color Chemists Association, 73, (1990), 7.Google Scholar
  211. 211.
    Wiktorek, S. “The Orientation of Micaceous Iron Oxide Particles in Organic Coatings Applied to Edges.” J. Oil Color Chem. Assoc., 69, (1986), 172.Google Scholar
  212. 212.
    Guidice, C., Benitez, J.C., “Optimising the Corrosion Protective Abilities of Lamellar Miceceous Iron Oxide Containing Primers.” Anti-Corrosion Methods and Materials, 47, (2000), 226.Google Scholar
  213. 213.
    Hendry, C.M., “Designed Permeability of Micaceous Iron-Oxide Coatings.” J. Coat. Technol., 62, (1990), 33.Google Scholar
  214. 214.
    Kalenda, P., Kalendova, A., Stengl, V., Antos, P., Subrt, J., Kvaca, Z., Bakardjieva, S., “Properties of Surface-Treated Mica in Anticorrosive Coatings.” Prog. Org. Coat., 49, (2004), 137.Google Scholar
  215. 215.
    Ahmed, N.M., Selim, M.M., “Enhancement of Properties of Red Iron Oxide-Aluminum Oxide Solid Solutions Anticorrosive Pigments.” Pigment & Resin Technology, 34, (2005), 256.Google Scholar
  216. 216.
    Goldschmidt, A., Streitberger, H., “ Basics of Coating Technology”, Vincentz Network, Hannover, (2003).Google Scholar
  217. 217.
    Knudsen, OO, Bardal, E, Steinsmo, U, “Effect of Barrier Pigments on Cathodic Disbonding. Part 1: Aluminum and Glass Pigments.” J. Corros. Sci. Eng., 2 (1999)Google Scholar
  218. 218.
    Knudsen, OO, Steinsmo, U, “Effect of Barrier Pigments on Cathodic Disbonding. Part 2: Mechanism of the Effect of Aluminum Pigments.” J. Corros. Sci. Eng., 2 (1999)Google Scholar
  219. 219.
    Pourbaix, M., “Atlas of Electrochemical Equilibria in Aqueous Solutions”, Pergamon Press, London, (1966).Google Scholar
  220. 220.
    Leidheiser, H., Wang, W., Ingetoft, L., “The Mechanism for the Cathodic Delamination of Organic Coatings from a Metal Surface.” Prog. Org. Coat., 11, (1983), 19.Google Scholar
  221. 221.
    Kalendova, A., “Effects of Particle Sizes and Shapes of Zinc Metal on the Properties of Anticorrosive Coatings.” Prog. Org. Coat., 46, (2003), 324.Google Scholar
  222. 222.
    Lohmander, S., “Influence of Shape and a Shape Factor of Pigment Particles on the Packing Ability in Coating Layers.” Nordic Pulp and Paper Journal, 15, (2000), 300.Google Scholar
  223. 223.
    Giudice, C.A., Benitez, J.C., Pereyra, A.M., “Influence of Extender Type of Performance of Modified Lamellar Zinc Primers.” JCT Research, 1, (2004), 291.Google Scholar
  224. 224.
    Kalendova, A., “Mechanism of the Action of Zinc-Powder in Anticorrosive Coatings.” Anti-Corrosion Methods and Materials, 49, (2002), 173.Google Scholar
  225. 225.
    Kruba, L., Stucker, P., Schuster, T., “Less Metal, More Protection.” European Coatings Journal, 10, (2005), 38.Google Scholar
  226. 226.
    Weinell, CE, Møller, P, “Accelerated Testing; Faster Development of Anti-Corrosive Coatings.” 14th Nordic Corrosion Congress, Copenhagen, 2007Google Scholar
  227. 227.
    Abu Ayana, Y. M., El-Sawy, S.M., Salah, S.H., “Zinc-Ferrite Pigment for Corrosion Protection.” Anti-Corrosion Methods and Materials, 44, (1997), 381.Google Scholar
  228. 228.
    Hare, C., Kunas, J.S., “Reduced PVC and the Design of Metal Primers.” J. Coat. Technol., 72, (2000), 21.Google Scholar
  229. 229.
    Marchebois, H., Touzain, S., Joiret, S., Bernard, J., Savall, C., “Zinc-rich Powder Coatings Corrosion in Sea Water: Influence of Conductive Pigments.” Prog. Org. Coat., 45, (2002), 415.Google Scholar
  230. 230.
    Marchebois, H., Savall, C., Bernard, J., Touzain, S., “Electrochemical Behavior of Zinc-Rich Powder Coatings in Artificial Sea Water.” Electrochim. Acta, 49, (2004), 2945.Google Scholar
  231. 231.
    Marchebois, H., Keddam, M., Savall, C., Bernard, J., Touzain, S., “Zinc-rich Powder Coatings Characterisation in Artificial Sea Water - EIS Analysis of the Galvanic Action.” Electrochim. Acta, 49, (2004), 1719.Google Scholar
  232. 232.
    Meroufel, A., Touzain, S., “EIS Characterisation of New Zinc-Rich Powder Coatings.” Prog. Org. Coat., (2007), 197.Google Scholar
  233. 233.
    Felloni, F., Fratesi, R., Quandrini, E., Roventi, G., “Electrodeposition of Zinc-Nickel Alloys from Chloride Solution.” J. Appl. Electrochem., (1987), 574.Google Scholar
  234. 234.
    Lay, D.E., Eckles, W.E., “The Fundamentals of Zinc/Cobalt.” Plat. Surf. Finish., (1990), 10.Google Scholar
  235. 235.
    Morks, M.F., “Magnesium Phosphate Treatment for Steel.” Mater. Lett., (2004), 3316.Google Scholar
  236. 236.
    Treacy, G.N., Wilcox, G.D., Richardson, M. O. W., “Behaviour of Molybdate-Passivated Zinc Coated Steel Exposed to Corrosive Chloride Environments.” J. Appl. Electrochem., 29, (1999), 647.Google Scholar
  237. 237.
    Sugama, T., Broyer, R., “Advanced Poly(Arcylic)Acid-Modified Zinc Phosphate Conversion Coatings: Use of Cobalt and Nickel Cations.” Surf. Coat. Technol., 50, (1992), 89.Google Scholar
  238. 238.
    Marder, A.R., “The metallurgy of zinc-coated steel.” Prog. Mater. Sci., 45, (2000), 191.Google Scholar
  239. 239.
    Barat, J.B., Kacarevic-Popovic, Z., Miskovic-Stankovic, V.B., ′Maksimovic, V.B., “Corrosion Behaviour of Epoxy Coatings Electrodeposited on Galvanized Steel and Steel Modified by Zn-Ni Alloys.” Prog. Org. Coat., (2000), 127.Google Scholar
  240. 240.
    Barat, J.B., Miskovic-Stankovic, V.B., “Protective Properties of Epoxy Coatings Electrodeposited on Steel Electrochemically Modified by Zn-Ni Alloys.” Prog. Org. Coat., 49, (2004), 183.Google Scholar
  241. 241.
    Tsybul’skaya, L.S., Gaevskaya, T.V., Byk, T.V., Klavsut, G.N., “Deposition, Structure and Properties of Electroplated Zinc Coating Alloyed with Cobalt.” Russ. J. Appl. Chem., 74, (2001), 1678.Google Scholar
  242. 242.
    Boshkov, N., Petrov, K., Raichevski, G., “Corrosion Behaviour and Protective Ability of Multilayer Galvanic Coatings of Zn and Zn-Mn Alloys in Sulfate Containing Medium.” Surf. Coat. Technol., 200, (2006), 5595.Google Scholar
  243. 243.
    Munz, R., Wolf, G.K., Guzman, L., Adami, M., “Zinc/Manganese Multilayer Coatings for Corrosion Protection.” Thin Solid Films, 459, (2004), 297.ADSGoogle Scholar
  244. 244.
    del Amo, B., Veleva, L., Di Sarli, A. R., Elsner, C.I., “Performance of Coated Steel Systems Exposed to Different Media Part I. Painted Galvanized Steel.” Prog. Org. Coat., 50, (2004), 179.Google Scholar
  245. 245.
    Kautek, W., Sahre, M., Paatch, W., “Transition-Metal Effects in the Corrosion Protection of Electroplated Zinc Alloy Coatings.” Electrochim. Acta, 39, (1994), 1151.Google Scholar
  246. 246.
    Parsons, P. et al., “Surface Coatings”, Chapman & Hall, London, (1993).Google Scholar
  247. 247.
    Arya, C., Vassie, P. R. W., “Influence of the Cathode-to-Anode Ratio and Separation Distance on Galvanic Corrosion Currents of Steel in Concrete Containing Chlorides.” Cement and Concrete Research, 25, (1995), 989.Google Scholar
  248. 248.
    Deya, M.C., Blustein, G., Romagnoli, R., del Amo, B., “The Influence of the Anion Type on the Anticorrosive Behaviour of Inorganic Phosphates.” Surf. Coat. Technol., 150, (2002), 133.Google Scholar
  249. 249.
    Mahdavian, M., Attar, M.M., (2005) “Investegation on Zinc Phosphate Effectiveness at Different Pigment Volume Concentrations via Electrochemical Impedance Spectroscopy.” Electrochim. Acta 50: 4645.Google Scholar
  250. 250.
    del Amo, B., Romagnoli, R., Vetere, V.F., Hernandez, L.S., (1998) “Study of the Anticorrosive Properties of Zinc Phosphate in Vinyl Paints.” Prog. Org. Coat. 33: 28.Google Scholar
  251. 251.
    Clay, M.F., Cox, J.H., “Chromate and Phosphate Pigments in Anti-Corrosive Primers.” J. Oil Color Chem. Assoc., (1973), 56:13.Google Scholar
  252. 252.
    Bittner, A., “Advanced Phosphate Anticorrosive Pigments for Compliant Primers.” J. Coat. Technol., 61, (1989), 111.MathSciNetGoogle Scholar
  253. 253.
    Fragata, F., Dopico, J., “Anticorrosive Behaviour of Zinc Phosphate in Alkyd and Epoxy Binders.” J. Oil Color Chem. Assoc., 74, (1991), 92.Google Scholar
  254. 254.
    Hare, C., “Inhibitive Primers to Passivate Steel.” J. Protect. Coat. Linings, 7, (1990), 61.Google Scholar
  255. 255.
    Leidheiser, H., “Mechanism of Corrosion Inhibition with Special Attention to Inhibitors in Organic Coatings.” J. Coat. Technol., 53, (1981), 29.Google Scholar
  256. 256.
    Mahdavian, M., Attar, M.M., “Evaluation of Zinc Phosphate and Zinc Chmomate Effectiveness via AC and DC Methods.” Prog. Org. Coat., 53, (2005), 191.Google Scholar
  257. 257.
    Romagnoli, R., del Amo, B., Vetere, V., Veleva, L., (2000) “High Performance Anticorrosive Epoxy Paints Pigmented with Zinc Molybdenum Phosphate.” Surf. Coat. Int. 1 27.Google Scholar
  258. 258.
    Kalendova, A., Brodinova, J., (2003) “Spinel and Rutile Pigments Containing Mg, Ca, Zn and other Cations for Anticorrosive Coatings.” Anti-Corrosion Methods and Materials, 50, 352.Google Scholar
  259. 259.
    Vippola, M., Ahmaniemi, S., Keranen, J., Vuoristo, P., Lepisto, T., Mantyla, T., Olsson, E., (2002) “Aluminum Phosphate Sealed Alumina Coating: Characterization of Microstructure.” Mater. Sci. 1.Google Scholar
  260. 260.
    Adrian, G, Bittner, A, Gawol, M, “New Phosphate-Based Anticorrosion Pigments.” Farbe + Lack, 87 833 (1981)Google Scholar
  261. 261.
    Kalenda, P., (1993) “Anticorrosion Pigments and Derived Coating Systems on Their Basis.” Dyes and Pigments, 23, 215.Google Scholar
  262. 262.
    EC 1907. European Union (2006)Google Scholar
  263. 263.
    Kalendova, A., Kalenda, P., Vesely, D., (2006) “Comparison of the Effiency of Inorganic Nonmetal Pigments with Zinc Powder in Anticorrosion Paints.” Prog. Org. Coat, 57, 1.Google Scholar
  264. 264.
    Bierwagen, G., Battocchi, D., Simões, A., Stamness, A., Tallman, D., (2007) “The Use of Multiple Electrochemcial Techniques to Characterize Mg-Rich Primers for Al Alloys.” Prog. Org. Coat, 59, 172.Google Scholar
  265. 265.
    Bastos, A.C., Ferreira, M. G. S., Simões, A.M., (2005) “Comparative Electrochemcial Studies of Zinc Chromate and Zinc Phosphate as Corrosion Inhibitors for Zinc.” Prog. Org. Coat, 52 339.Google Scholar
  266. 266.
    Xia, L., McCerry, R.L., (1998) “Chemistry of a Chromate Conversion Coating on Aluminum Alloy AA2024-T3 Probed by Vibrational Spectroscopy.” J. Electrochem. Soc, 145, 3083.Google Scholar
  267. 267.
    Zhao, J., Frankel, G., McCerry, R.L., (1998) “Corrosion Protection of Untreated AA-2024-T3 in Chloride Solution by a Chromate Conversion Coating Monitored with Raman Spectroscopy.” J. Electrochem. Soc, 2258.Google Scholar
  268. 268.
    Hughes, A.E., Taylor, R.J., Hinton, B. R. W., (1997) “Chromate Conversion Coatings on 2024 Al Alloy.” Surf. Interface Anal, 25, 223.Google Scholar
  269. 269.
    Katzman, H.A., Malouf, G.M., (1979) “Corrosion-ProtectiveChromate Coatings on Aluminum.” Applications of Surface Science, 416.Google Scholar
  270. 270.
    Clark, W.J., Ramsey, J.D., McCerry, R.L., Frankel, G.S., (2002) “A Galvanic Corrosion Approach to Investigating Chromate effects on Aluminum Alloy 2024-T3.” J. Electrochem. Soc, 149, B179.Google Scholar
  271. 271.
    Moffat, T.P., Latanision, R.M., (1992) “An Electrochemical and X-Ray Photoelectron Spectroscopy Study of the Passive State of Chromium.” J. Electrochem. Soc, 139, 1896.Google Scholar
  272. 272.
    Kendig, M., Davenport, A.J., Isaacs, H.S., (1993) “The Mechanism of Corrosion Inhibition by Chromate Conversion Coatings from X-Ray Absorption near Edge Spectroscopy (XANES).” Corros. Sci, 34, 41.Google Scholar
  273. 273.
    Sunseri, C., Piazza, S., Di Quarto, F., (1990) “Photocurrent Spectroscopic Investigations of Passive Films on Chromium.” J. Electrochem. Soc, 137, 2411.Google Scholar
  274. 274.
    Kim, J., Cho, E., Kwon, H., (2001) “Photo-Electrochemical Analysis of Passive Film Formed on Cr in pH8.5 Bugger Solution.” Electrochim. Acta, 47, 415.Google Scholar
  275. 275.
    Maurice, V., Yang, W.P., Marcus, P., (1994) “XPS and STM Investigation of the Passive Film Formed on Cr(110) Single-Crystal Surfaces.” J. Electrochem. Soc., 141, 3016.ADSGoogle Scholar
  276. 276.
    Mayne, J. E. O., Ridgway, P., (1974) “Chemical Analysis of The Oxide Film Present on Iron and Steel.” Br. Corros. J., 3, 177.Google Scholar
  277. 277.
    McCafferty, E., Bernett, M.K., Murday, J.S., (1988) “An XPS Study of Passive Film Formation on Iron in Chromate Solutions.” Corros. Sci., 28, 559.Google Scholar
  278. 278.
    Meisel, W., Mohs, E., Guttman, H.J., Gutlich, P., (1983) “An ESCA and Mössbauer study of the oxide layer formed on steel in water containing chromate and chloride ions.” Corros. Sci, 23, 465.Google Scholar
  279. 279.
    Szklarska-Smialowska, Z., Staehle, R.W., (1974) “Ellipsometric Study of the Formation of Films on Iron in Chromate Solutions.” J. Electrochem. Soc., 121, 1146.Google Scholar
  280. 280.
    Onuchukwu, A.I., (1984) “The mechanism of the corrosion inhibition of carbon steel in neutral medium by chromate and nickel ions.” Corros. Sci., 24, 833.Google Scholar
  281. 281.
    Virtanen, S., Buchler, M., (2003) “Electrochemical Behavior of Surface Films Formed on Fe in Chromate Solution.” Corros. Sci, 45, 1405.Google Scholar
  282. 282.
    Isaacs, H.S., Virtanen, S., Ryan, M.P., Schmuki, P., Oblonsky, L.J., (2002) “Incorporation of Cr in the Passive Film on Fe from Chromate Solutions.” Electrochim. Acta, 47, 3127.Google Scholar
  283. 283.
    Gabrielli, C., Keddam, M., Minouflet-Laurent, F., Ogle, K., Perrot, H., (2003) “Investigation of Zinc Chromatation Part II. Electrochemcial Impedance Techniques.” Electrochim. Acta, 48, 1483.Google Scholar
  284. 284.
    Kalendova, A., Vesely, D., Kalenda, P., (2006) “A study of the Effects of Pigments and Fillers on the Properties of Anticorrosive Paints.” Pigment & Resin Technology, 35, 83.Google Scholar
  285. 285.
    Kalendova, A., (2000) “Alkalising and Neutralising Effects of Anticorrosive Pigments containing Zn, Mg, Ca and Sr Cations.” Prog. Org. Coat., 38, 199.Google Scholar
  286. 286.
    Kalendova, A., Vesely, D., (2007) “Needle-Shaped Anticorrrosion Pigments Based on the Ferrites of Zinc, Calcium and Magnesium.” Anti-Corrosion Methods and Materials, 54, 3.Google Scholar
  287. 287.
    Kalenda, P., Kalendova, A., Mosner, P., Poledno, M., (2002) “Efficiency of Anticorrosive Pigments Based on Modified Phosphate.” Macromol. Symp., 187, 397.Google Scholar
  288. 288.
    Bauer, D.R., (1994) “Chemical Criteria for Durable Automobile Top Coats.” J. Coat. Technol, 66, 57.Google Scholar
  289. 289.
    Avar, L., Bohnke, H., Hess, E., (1991) “Analytical Studies of Light Stabilizers in Two-Coat Automotive Finishes.” J. Coat. Technol, 63, 53.Google Scholar
  290. 290.
    Valet, A., “Light Stabilizers for Paints”, Vincentz Verlag, Hanover, (1997).Google Scholar
  291. 291.
    Ochs, H., Vogelsang, J., Meyer, G., (2003) “Enhanced Surface Roughness of Organic Coatings due to UV-Degradation: An Unknown Surface of EIS-Artifacts.” Prog. Org. Coat, 46, 182.Google Scholar
  292. 292.
    Funke, W., (1985) “Towards a Unified View of the Mechanisms Resposible for Paint Defects by Metallic Corrosion.” Ind. Eng. Chem. Pro. Res. Dev, 24, 343.Google Scholar
  293. 293.
    Funke, W., (1981) “Blistering of Paint Films and Filliform Corrosion.” Prog. Org. Coat, 9, 29.Google Scholar
  294. 294.
    Nguyen, T., Byrd, E., Bentz, D., (1995) “Quantifying Water at the Organic Film/Hydroxylated Substrate Interface.” J. Adhes., 48, 169.Google Scholar
  295. 295.
    Nguyen, T., Byrd, E., Bentz, D., Lin, C., (1996) “In Situ Measurement of Water at the Organic Coating/Substrate Interface.” Prog. Org. Coat., 27, 181.Google Scholar
  296. 296.
    Leidheiser, H., (1983) “Towards a Better Understanding of Corrosion Beneath Organic Coatings.” Corrosion, 39, 189.Google Scholar
  297. 297.
    Funke, W., Haagen, H., (1978) “Empirical or Scientific Approach to Evaluate the Corrosion Protective Performance of Organic Coatings.” Ind. Eng. Chem. Pro. Res. Dev, 17, 50.Google Scholar
  298. 298.
    Linossier, I., Gaillard, M., Romand, M., (1999) “A Spectroscopic Technique for Studies of Water Transport Along the Interface and Hydrolytic Stability of Polymer/Substrate Systems.” J. Adhes, 70, 221.Google Scholar
  299. 299.
    Steel, G.D., (1994) “Filiform Corrosion on Architectural Aluminum - A Review.” Anti-Corrosion Methods and Materials, 41 8.Google Scholar
  300. 300.
    Slabauhg, W.H., Hutchins, L.L., Dejager, W., Hoover, S.E., (1972) “Filiform Corrosion of Aluminum.” J. Paint Technol., 44, 76.Google Scholar
  301. 301.
    Olsen, H., Nisancioglu, K., (1998) “Filiform Corrosion of Aluminum Sheet. I. Corrosion Behaviour of Painted Steel.” Corros. Sci., 40, 1179.Google Scholar
  302. 302.
    Bautista, A., (1996) “Filiform Corrosion in Polymer-Coated Metals.” Prog. Org. Coat., 28, 49.Google Scholar
  303. 303.
    Ruggeri, R.T., Beck, T.R., (1983) “An Analysis of Mass-Transfer in Filiform Corrosion.” Corrosion, 39, 452.Google Scholar
  304. 304.
    Nguyen, T., Hubbard, T.B., Pommersheim, J.M., (1996) “Unified model for the Degradation of Organic Coatings on Steel in a Neutral Electrolyte.” J. Coat. Technol., 68, 45.Google Scholar
  305. 305.
    Deflorian, F., Rossi, S., (2003) “The Role of Ions Diffusion in the Cathodic Delamination Rate of Polyester Coated Phosphatized Steel.” J. Adhes. Sci. Technol., 17, 291.Google Scholar
  306. 306.
    Dickie, R.A., (1986) “Chemical Studies of the Organic Coating/Steel Interface After Exposure to Aggressive Environments.” ACS Symposium Series, 322, 136.CrossRefGoogle Scholar
  307. 307.
    Mayne, JEO, “The Mechanism of the Inhibition of the Corrosion of Iron and Steel by Means of Paint.” Off. Dig., 127 (1952)Google Scholar
  308. 308.
    Lyon, S.B., Philippe, L., Tsuousoglou, E., (2006) “Direct Measurements of Ionic Diffusion in Protective Organic Coatings.” Transactions of the Institute of Metal Finishing, 23.Google Scholar
  309. 309.
    Floyd, FL, Groseclose, RG, Frey, CM, “Mechanistic Model for Corrosion Protection via Paint.” Biennial Conference—Oil & Color Chemists’ Association: The Efficient Use of Surface Coatings, p. 70, 1983Google Scholar
  310. 310.
    Parks, J., Leidheiser, H., (1986) “Ionic Migration through Organic Coatings and Its Consequences to Corrosion.” Ind. Eng. Chem. Pro. Res. Dev., 25, 1.Google Scholar
  311. 311.
    Koehler, E.L., (1984) “The Mechanism of Cathodic Disbondment of Protective Organic Coatings - Aqueous Displacement at Elevated pH.” Corrosion, 5.Google Scholar
  312. 312.
    Watts, J.F., Castle, J.E., (1984) “The Application of Photoelectron Spectroscopy to the Study of Polymer-to-Metal Adhesion. Part 2.” J. Mater. Sci., 2259.ADSGoogle Scholar
  313. 313.
    Leidheiser, H., Granata, R.D., (1988) “Ion Transport through Protective Polymeric Coatings Exposed to an Aqeous Phase.” J. Res. Dev., 582.Google Scholar
  314. 314.
    Ritter, J.J., (1982) “Ellipsometric Studies on the Cathodic Delamination of Organic Coatings on Steel and Iron.” J. Coat. Technol., 54, 51.Google Scholar
  315. 315.
    Grundmeier, G., Stratmann, M., (2005) “Adhesion and De-Adhesion Mechanisms at Polymer/Metal Interfaces: Mechanistic Understanding Based on In Situ Studies of Buried Interfaces.” Annu. Rev. Mater. Sci, 35, 571.ADSGoogle Scholar
  316. 316.
    Murase, M., Watts, J.F., (1998) “XPS Study of Coating Delamination from Non-Rinse Chromate Treated Steel.” J. Mater. Sci., 8, 1007.Google Scholar
  317. 317.
    Watts, J.F., Castle, J.E., (1983) “The Application of Photoelectron Spectroscopy to the Study of Polymer-to-Metal Adhesion. Part 1.” J. Mater. Sci., 18, 2987.ADSGoogle Scholar
  318. 318.
    Hammond, J.S., Holubka, J.W., Dickie, R.A., (1979) “Surface Analysis of Interfacial Chemistry in Corrosion-Induced Paint Adhesion Loss.” J. Coat. Technol., 51, 45.Google Scholar
  319. 319.
    Watts, J.F., “Mechanistic Aspects of the Cathodic Delamination of Organic Coatings.” J. Adhes., (1989), 73.Google Scholar
  320. 320.
    Hamade, R.F., Dillard, D.A., (2003) “Cathodic Weakening of Elastomer-to-Metal Adhesive Bonds: Accelerated Testing and Modeling.” J. Adhes. Sci. Technol., 17, 1235.Google Scholar
  321. 321.
    Gettings, M., Baker, F.S., Kinloch, A.J., (1977) “Use of Auger and X-Ray Photoelectron Spectroscopy to Study the Locus of Failure of Structural Adhesive Joints.” J. Appl. Polym. Sci., 21, 2375.Google Scholar
  322. 322.
    Pommersheim, J.M., Nguyen, T., Zhang, Z., Hubbard, J.B., (1994) “Degradation of Organic Coatings on Steel: Mathematical Models and Predictions.” Prog. Org. Coat., 25, 23.Google Scholar
  323. 323.
    Darwin, AB, Scantlebury, JD, “The Behaviour of Epoxy Powder Coatings on Mild Steel under Alkali Conditions.” J. Corros. Sci. Eng., 2 (1999)Google Scholar
  324. 324.
    Sommer, A.J., Leidheiser, H., (1987) “Effect of Alkali Metal Hydroxides on the Dissolution of Zinc Phosphate Conversion Coating on Steel and Pertinence to Cathodic Delamination.” Corrosion, 43, 661.Google Scholar
  325. 325.
    Smith, A.G., Dickie, R.A., (1978) “Adhesion Failure Mechenisms of Primers.” Ind. Eng. Chem. Pro. Res. Dev., 17, 42.Google Scholar
  326. 326.
    Hernandez, M.A., Galliano, F., Landolt, D., (2004) “Mechanism of Cathodic Delamination Control of Zinc Aluminum.” Corros. Sci., 46, 2281.Google Scholar
  327. 327.
    Furbeth, W., Stratmann, M., (1995) “Investigation of the Delamination of Polymer Films from Galvanized Steel with the Scanning Kelvin Probe .” Fresenius J. Anal. Chem., 353, 337.Google Scholar
  328. 328.
    Bullet, T.R., Rudram, A. T. S., (1961) “The Coating and the Substrate.” J. Oil Color Chem. Assoc, 44, 787.Google Scholar
  329. 329.
    Brunt, N.A., (1964) “Blistering of Paint Layers as an Effect of Swelling by Water.” J. Oil Color Chem. Assoc., 47, 31.Google Scholar
  330. 330.
    van Laar, J. A., (1961) “Blistering of Painted Steel.” Paint Varnish Production, 51, 31.Google Scholar
  331. 331.
    de la Fuente, D., Bohm, M., Houyoux, C., Rohwerder, M., Morcillo, M., (2007) “The Settling of Critical Levels of Soluble Salts for Painting.” Prog. Org. Coat., 58, 23.Google Scholar
  332. 332.
    ISO 15235. International Standards Organization, Geneve (2007)Google Scholar
  333. 333.
    Krstajic, N.V., Grgur, B.N., Jovanovic, S.M., Vojnovic, M.V., (1997) “Corrosion Protection of Mild Steel by Polypyrrole Coatings in Acid Sulfate Solutions.” Electrochim. Acta, 42, 1685.Google Scholar
  334. 334.
    Tan, C.K., Blackwood, D.J., (2003) “Corrosion Protection by Multilayered Conducting Polymer Coatings.” Corros. Sci., 45, 545.Google Scholar
  335. 335.
    Wesseling, B., (1994) “Passivation of Metals by Coating with Polyaniline - Corrosion Potential Shift and Morphological Changes.” Advanced Materials, 3, 226.Google Scholar
  336. 336.
    Ahmad, N., MacDiarmid, A.G., (1996) “Inhibition of Corrosion of Steels with the Exploitation of Conducting Polymers.” Synthetic Metals, 78, 103.Google Scholar
  337. 337.
    Kinlen, P.J., Silverman, D.C., Jeffreys, C.R., (1997) “Corrosion Protection using Polyaniline Coating Formulations.” Synthetic Metals, 85, 1327.Google Scholar
  338. 338.
    Tansug, G., Tuken, T., Ozyilmaz, A.T., Erbil, M., Yazici, C., (2007) “Mild Steel Protection with Epoxy Top Coated Polypyrrole and Polyaniline in 3.5% NaCl.” Current Applied Physics, 7, 440.ADSGoogle Scholar
  339. 339.
    Tallman, D.E., Spinks, G., Dominis, A., Wallace, G.G., (2002) “Electroactive Conducting Polymers for Corrosion Control.” J. Solid State Electrochem., 6, 73.Google Scholar
  340. 340.
    Spinks, G., Dominis, A., Wallace, G.G., Tallman, D.E., (2002) “Electroactive Conducting Polymers for Corrosion Control - Part 2. Ferrous Metals.” J. Solid State Electrochem. 6, 85.Google Scholar
  341. 341.
    Keller, M.W., Sottos, N.R., (2006) “Mechanical Properties of Microcapsules used in a Self-Healing Polymer.” Experimental Mechanics, 46, 725.Google Scholar
  342. 342.
    Sauvant-Moynot, V, Duval, S, Gonzalez, S, Vallet, J, Grenier J, EP 1591562, 2005Google Scholar
  343. 343.
    Cook RL, U.S. Pat. 6,933,046, 2005Google Scholar
  344. 344.
    Kendig, M., Kinlen, P., (2007) “Demonstration of Galvanically Stimulated Release of Corrosion Inhibitor.” J. Electrochem. Soc., 154, C195.Google Scholar
  345. 345.
    Bernstein, B., (2006) “Assesment of Self-Healing Polymer Technology for Utility Overhead Applications.” Electrical Insulation Magazine, 22 15.Google Scholar
  346. 346.
    Yoshida, M., Lahann, J., (2008) “Smart Nanomaterials.” ACS NANO, 2, 1101.PubMedGoogle Scholar

Copyright information

© FSCT and OCCA 2008

Authors and Affiliations

  • P. A. Sørensen
    • 1
  • S. Kiil
    • 1
  • K. Dam-Johansen
    • 1
  • C. E. Weinell
    • 2
  1. 1.Department of Chemical and Biochemical EngineeringTechnical University of DenmarkLyngbyDenmark
  2. 2.Hempel A/SLyngbyDenmark

Personalised recommendations