Advertisement

Journal of Coatings Technology and Research

, Volume 6, Issue 1, pp 107–121 | Cite as

Combinatorial materials research applied to the development of new surface coatings XII: Novel, environmentally friendly antimicrobial coatings derived from biocide-functional acrylic polyols and isocyanates

  • Alex J. Kugel
  • Laura E. Jarabek
  • Justin W. Daniels
  • Lyndsi J. Vander Wal
  • Scott M. Ebert
  • Michael J. Jepperson
  • Shane J. Stafslien
  • Robert J. Pieper
  • Dean C. Webster
  • James Bahr
  • Bret J. ChisholmEmail author
Article

Abstract

Novel, environmentally friendly antimicrobial coatings containing tethered biocide moieties derived from the ubiquitous biocide, triclosan, were synthesized and characterized using a high-throughput workflow. Triclosan was first modified with an acrylate functionality and, subsequently, copolymerized with hydroxyethyl acrylate and butyl acrylate using conventional free radical polymerization to form an array of acrylic polyol terpolymers. The polyols were characterized using nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and gel permeation chromatography. Arrays of urethane coatings were produced from the array of acrylic polyol terpolymers and, subsequently, characterized using parallel dynamic mechanical thermal analysis, surface energy measurements, and various biological assays. The results of the biological assays showed that the coatings were effective toward inhibiting Staphylococcus epidermidis biofilm retention without leaching triclosan or other toxic components from the coating. The level of antimicrobial activity was found to increase with the content of triclosan moieties incorporated into the coating matrix. These results indicate that triclosan moieties tethered to a polymer matrix can impart antimicrobial properties via a contact-active, nonleaching (i.e., environmentally friendly) mechanism. Since S. epidermidis is one of the primary microorganisms associated with infection and failure of implanted medical devices, such as prosthetic heart valves, urinary catheters, and a variety of orthopedic implants, these coatings may have good potential for commercialization in some of these applications.

Keywords

Antimicrobial Triclosan Staphylococcus epidermidis Urethane Biocide 

Notes

Acknowledgments

The authors thank the Office of Naval Research under grants N00014-06-1-0952 and N00014-07-1-1099.

References

  1. 1.
    Jarvis, WR, “The Lowbury Lecture. The United States Approach to Strategies in the Battle Against Healthcare-Associated Infections, 2006: Transitioning from Benchmarking to Zero Tolerance and Clinician Accountability.” J. Hosp. Infect., 65 Suppl 2 3–9 (2007). doi: 10.1016/S0195-6701(07)60005-X
  2. 2.
    Callow, ME, Callow, JE, 2002 Marine Biofouling: A Sticky Problem. Biologist (London) 49(1):10–14MathSciNetGoogle Scholar
  3. 3.
    Stafslien, SJ, et al., “Combinatorial Materials Research Applied to the Development of New Surface Coatings. VI: An Automated Spinning Water Jet Apparatus for the High-Throughput Characterization of Fouling-Release Marine Coatings.” Rev. Sci. Instrum., 78 (7) 072204/1–072204/6 (2007)Google Scholar
  4. 4.
    Casse, F, et al. 2007 Combinatorial Materials Research Applied to the Development of New Surface Coatings. V. Application of a Spinning Water-Jet for the Semi-High Throughput Assessment of the Attachment Strength of Marine Fouling Algae. Biofouling 23(1/2):121–130. doi: 10.1080/08927010701189583 PubMedCrossRefGoogle Scholar
  5. 5.
    Chisholm, BJ, DA Christianson, and DC Webster 2006 Combinatorial Materials Research Applied to the Development of New Surface Coatings. Prog. Org. Coat. 57(2):115–122. doi: 10.1016/j.porgcoat.2006.07.003 CrossRefGoogle Scholar
  6. 6.
    Chisholm, BJ, et al. 2007 Combinatorial Materials Research Applied to the Development of New Surface Coatings. VIII: Overview of the High-Throughput Measurement Systems Developed for a Marine Coating Workflow. Appl. Surf. Sci. 254(3):692–698. doi: 10.1016/j.apsusc.2007.05.090 CrossRefADSGoogle Scholar
  7. 7.
    Chisholm, BJ, et al., “Combinatorial Materials Research Applied to the Development of New Surface Coatings. VII: An Automated System for Adhesion Testing.” Rev. Sci. Instrum., 78 (7) 072213/1–072213/9 (2007)Google Scholar
  8. 8.
    Majumdar, P, et al. 2008 Combinatorial Materials Research Applied to the Development of New Surface Coatings. IX: An Investigation of Novel Antifouling/Fouling-Release Coatings Containing Quaternary Ammonium Salt Groups. Biofouling 24(3):185–200. doi: 10.1080/08927010801894660 PubMedCrossRefGoogle Scholar
  9. 9.
    Stafslien, S, et al. 2007 Combinatorial Materials Research Applied to the Development of New Surface Coatings. III. Utilization of a High-Throughput Multiwell Plate Screening Method to Rapidly Assess Bacterial Biofilm Retention on Antifouling Surfaces. Biofouling 23(1/2):37–44. doi: 10.1080/08927010601127311 PubMedCrossRefGoogle Scholar
  10. 10.
    Stafslien, S, et al. 2007 Combinatorial Materials Research Applied to the Development of New Surface Coatings. IV. A High-Throughput Bacterial Biofilm Retention and Retraction Assay for Screening Fouling—Release Performance of Coatings. Biofouling 23(1/2):45–54. doi: 10.1080/08927010601137856 PubMedCrossRefGoogle Scholar
  11. 11.
    Stafslien, SJ, et al. 2006 Combinatorial Materials Research Applied to the Development of New Surface Coatings. I: A Multiwell Plate Screening Method for the High-Throughput Assessment of Bacterial Biofilm Retention on Surfaces. J. Combin. Chem. 8(2):156–162. doi: 10.1021/cc050047m CrossRefGoogle Scholar
  12. 12.
    Webster, DC, BJ Chisholm, and SJ Stafslien 2007 Mini-Review: Combinatorial Approaches for the Design of Novel Coating Systems. Biofouling 23(3):179–192. doi: 10.1080/08927010701250948 PubMedCrossRefGoogle Scholar
  13. 13.
    Schweizer, HP 2001 Triclosan: A Widely Used Biocide and Its Link to Antibiotics. FEMS Microbiol. Lett. 202(1):1–7. doi: 10.1111/j.1574-6968.2001.tb10772.x PubMedCrossRefGoogle Scholar
  14. 14.
    Pieper, RJ, et al. 2007 Combinatorial Approach to Study the Effect of Acrylic Polyol Composition on the Properties of Crosslinked Siloxane-Polyurethane Fouling-Release Coatings. J. Coat. Technol. Res. 4(4):453–461. doi: 10.1007/s11998-007-9032-1 CrossRefGoogle Scholar
  15. 15.
    Lobry, JR, G Carret, JP Flandrois 1992 Maintenance Requirements of Escherichia coli ATCC 25922 in the Presence of Subinhibitory Concentrations of Various Antibiotics. J. Antimicrob. Chemother. 29(2):121–127. doi: 10.1093/jac/29.2.121 PubMedCrossRefGoogle Scholar
  16. 16.
    Owens, DK, RC Wendt 1969 Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 13(8):1741–1747. doi: 10.1002/app.1969.070130815 CrossRefGoogle Scholar
  17. 17.
    Carman, M, et al. 2006 Engineered Antifouling Microtopographies—Correlating Wettability with Cell Attachment. Biofouling 22(1/2):11–21. doi: 10.1080/08927010500484854 PubMedCrossRefGoogle Scholar
  18. 18.
    Hoipkemeier-Wilson, L, et al. 2004 Antifouling Potential of Lubricious, Micro-Engineered, PDMS Elastomers Against Zoospores of the Green Fouling alga Ulva (Enteromorpha). Biofouling 20(1):53–63. doi: 10.1080/08927010410001662689 PubMedCrossRefGoogle Scholar
  19. 19.
    Estes, T, et al. 2004 Settlement and Release of Balanus and Ulva as a Function of PDMS Elastomer Surface Energy. Polym. Preprints (American Chemical Society, Division of Polymer Chemistry) 45(1):610–611Google Scholar
  20. 20.
    Majumdar, P, et al. 2007 High Throughput Combinatorial Characterization of Thermosetting Siloxane-Urethane Coatings Having Spontaneously Formed Microtopographical Surfaces. J. Coat. Technol. Res. 4(2):131–138. doi: 10.1007/s11998-007-9015-2 CrossRefGoogle Scholar
  21. 21.
    Wang, JH, et al. 1994 Dynamic Contact Angles and Contact Angle Hysteresis of Plasma Polymers. Langmuir 10(10):3887–3897. doi: 10.1021/la00022a080 CrossRefGoogle Scholar
  22. 22.
    Jang, H-J, et al. 2008 Microarray Analysis of Toxicogenomic Effects of Triclosan on Staphylococcus aureus. Appl. Microbiol. Biotechnol. 78(4):695–707. doi: 10.1007/s00253-008-1349-x PubMedCrossRefMathSciNetGoogle Scholar
  23. 23.
    Ramachandran, T, K Rajendrakumar, R Rajendran (2004) Antimicrobial Textiles—An Overview. Inst. Eng. (India) Tech. J.: Textile Eng. 84(TX2):42–47Google Scholar
  24. 24.
    Wang, C, et al. 2007 Role of ClpP in Biofilm Formation and Virulence of Staphylococcus epidermidis. Microbes Infect. 9(11):1376–1383. doi: 10.1016/j.micinf.2007.06.012 PubMedCrossRefGoogle Scholar
  25. 25.
    Kwakman, PHS, et al. 2006 Treatment and Prevention of Staphylococcus epidermidis Experimental Biomaterial-Associated Infection by Bactericidal Peptide 2. Antimicrob. Agents Chemother. 50(12):3977–3983. doi: 10.1128/AAC.00575-06 PubMedCrossRefGoogle Scholar
  26. 26.
    Hume, EBH, et al. (2004) The Control of Staphylococcus epidermidis Biofilm Formation and In Vivo Infection Rates by Covalently Bound Furanones. Biomaterials 25(20):5023–5030. doi: 10.1016/j.biomaterials.2004.01.048 PubMedCrossRefGoogle Scholar

Copyright information

© FSCT and OCCA 2008

Authors and Affiliations

  • Alex J. Kugel
    • 1
  • Laura E. Jarabek
    • 2
  • Justin W. Daniels
    • 2
  • Lyndsi J. Vander Wal
    • 2
  • Scott M. Ebert
    • 2
  • Michael J. Jepperson
    • 2
  • Shane J. Stafslien
    • 2
  • Robert J. Pieper
    • 1
  • Dean C. Webster
    • 1
    • 2
  • James Bahr
    • 2
  • Bret J. Chisholm
    • 1
    • 2
    Email author
  1. 1.Department of Coatings & Polymeric MaterialsNorth Dakota State UniversityFargoUSA
  2. 2.Center for Nanoscale Science and EngineeringNorth Dakota State UniversityFargoUSA

Personalised recommendations