The development of coatings using combinatorial/high throughput methods: a review of the current status



Combinatorial chemistry is a relatively new experimental methodology developed by academics and researchers in the pharmaceutical industry to reduce the time and cost associated with drug development. Basically, combinatorial chemistry involves the rapid synthesis and evaluation of large numbers of compounds in parallel using robotics, rapid analytical instrumentation, and data management software. More recently, the principles of combinatorial chemistry have been applied to materials development, and interest in this area is increasing rapidly. This interest can be attributed to the potential for obtaining a major competitive advantage by implementing a combinatorial approach. This document provides an introduction to combinatorial materials science and provides a review of efforts aimed at developing combinatorial workflows for coating development. While the application of combinatorial methods to coating development is still in its infancy, full combinatorial workflows have been developed within a few different organizations.


High throughput screening Combinatorial array Parallel screening 


  1. 1. Scholar
  2. 2.
    Bannwarth, W, Felder E (eds.), Combinatorial Chemistry. Wiley-VCH, Weinheim, Germany (2000)Google Scholar
  3. 3.
    Wijkmans, JCHM, Beckett, PR, "Combinatorial Chemistry in Anti-Infectives Research." Drug Discovery Today, 7(2) 126–132 (2002)CrossRefGoogle Scholar
  4. 4.
    Eichler, J, Houghten, RA, "Generation and Utilization of Synthetic Combinatorial Libraries." Mol. Med. Today, 1(4) 174–180 (1995)CrossRefGoogle Scholar
  5. 5.
    Thorpe, DS, "Combinatorial Chemistry: Starting the Second Decade." Pharmacogenomics J., 1(4) 229–233 (2001)Google Scholar
  6. 6.
    Nicolaou, KC, Hanko, R, Hartwig, W (eds.), Handbook of Combinatorial Chemistry. Wiley-VCH Verlag GmbH & Co., Weinheim, Germany (2002)Google Scholar
  7. 7.
    Peil, KP, Neithamer, DR, Patrick, DW, Wilson, BE, Tucker, CJ, "Applications of High Throughput Research at the Dow Chemical Company." Macromol. Rapid Commun., 25(1) 119–126 (2004)CrossRefGoogle Scholar
  8. 8.
    Bryan, GS Edison, The Man and his Work, Knopf, London, (1930)Google Scholar
  9. 9.
    Borman, S, Chem. Eng. News, Feb. 24, 43–62 (1997)Google Scholar
  10. 10. Scholar
  11. 11. Scholar
  12. 12.
    Persidis, A, “Economics of Combinatorial Chemistry and Combinatorial Technologies.” In: Miertus, S, Fassina, G (eds.), Combinatorial Chemistry and Technology. Marcel Dekker, Inc., New York (1999)Google Scholar
  13. 13.
    Chisholm, BJ, Potyrailo, R, Cawse, J, Shaffer, R, Brennan, M, Molaison, C, Whisenhunt, D, Flanagan, B, Olson, D, Akhave, J, Saunders, D, Mehrabi, A, Licon, M, "The Development of Combinatorial Chemistry Methods for Coating Development I. Overview of the Experimental Factory." Prog. Org. Coat., 45 313–321 (2002)CrossRefGoogle Scholar
  14. 14.
    Jandeleit, B, Schaefer, DJ, Powsers, TS, Turner, HW, Weinberg, WH, "Combinatorial Materials Science and Catalysis." Angew. Chem. Int. Ed., 38 2494–2532 (1999)CrossRefGoogle Scholar
  15. 15.
    Xiang, XD, Sun, X, Briceno, G, Lou, Y, Wang, KA, Chang, H, Wallace-Freedman, WG, Chen, SW, Schultz, PG, Science, 268 1738–1740 (1995)CrossRefGoogle Scholar
  16. 16.
    Duff, DG, Ohrenberg, A, Voelkening, S, Boll, M, "A Screening Workflow for Synthesis and Testing of 10,000 Heterogenous Catalysts per Day - Lessons Learned." Macromol. Rapid Commun., 25 169–177 (2004)CrossRefGoogle Scholar
  17. 17.
    Meier, MAR, Hoogenboom, R, Schubert, US, "Combinatorial Methods, Automated Synthesis and High-Throughput Screening in Polymer Research: The Evolution Continues." Macromol. Rapid Commun., 25 21–33 (2004)CrossRefGoogle Scholar
  18. 18.
    Siegel, A, Combinatorial Synthesis of Advanced Ceramic Materials. Can. Ceramics, 67(2) 17–21 (1998)Google Scholar
  19. 19.
    Whisenhunt, DW, Carter, R, Shaffer, R, Bulsiewicz, W, Flanagan, W, Mater. Res. Soc. Symp. Proc., (Combinatorial and Artificial Intelligence Methods in Materials Science II), 804 137–142 (2004) Google Scholar
  20. 20.
    Wroczynski, RJ, Rubinsztajn, M, Potyrailo, RA, "Evaluation of Process Degradation of Polymer Formulations Utilizing High-Throughput Preparation and Analysis Methods." Macromol. Rapid Commun., 25 264–269 (2004)CrossRefGoogle Scholar
  21. 21.
    Grunlan, JC, Holguin, DL, Chuang, HK, Perez, I, Chavira, A, Quilatan, R, Akhave, J, Mehrabi, AR, "Combinatorial Development of Pressure-Sensitive Adhesives." Macromol. Rapid Commun., 25 286–291 (2004)CrossRefGoogle Scholar
  22. 22.
    Mirsky, VM, Kulikov, V, Hao, Q, Wolfbeis, OS, "Multiparameter High Throughput Characterization of Combinatorial Chemical Microarrays of Chemosensitive Polymers." Macromol. Rapid Commun., 25 253–258 (2004)CrossRefGoogle Scholar
  23. 23.
    Potyrailo, RA, "Sensors in Combinatorial Polymer Research." Macromol. Rapid Commun., 25 77–94 (2004)CrossRefGoogle Scholar
  24. 24.
    Smith, JR, Seyda, A, Weber, N, Knight, D, Abramson, S, Kohn, J, "Integration of Combinatorial Synthesis, Rapid Screening, and Computational Modeling in Biomaterials Development." Macromol. Rapid Commun., 25 127–140 (2004)CrossRefGoogle Scholar
  25. 25.
    Thelakkat, M, Schmitz, C, Neuber, C, Schmidt, HW, "Materials Screening and Combinatorial Development of Thin Film Multilayer Electro-Optical Devices." Macromol. Rapid Commun., 25 204–233 (2004)CrossRefGoogle Scholar
  26. 26.
    Fukumoto, H, Muramatsu, Y, Yamamoto, T, Yamaguchi, J, Itaka, K, Koinuma, H, "Combinatorial Physical Vapor Deposition of π-conjugated Organic Thin Film Libraries." Macromol. Rapid Commun., 25 196–203 (2004)CrossRefGoogle Scholar
  27. 27.
    Xiang, X-D, Sun, X, Briceno, G, Lou, Y, Wang, K-A, Chang, H, Wallace, WG, Freedman, SW, Schultz, PG, Science, 268 1738 (1995)Google Scholar
  28. 28.
    Schmitt, JJ, Jerome, J. Mater. Res. Soc. Symp. Proc., (Properties and Processing of Vapor-Deposited Coatings), 555 255–260 (1999)Google Scholar
  29. 29.
    Pilipauskas, DR, “Can the Time from Synthesis Design to Validated Chemistry be Shortened?” Med. Res. Rev. 19(5) 463–474 (1999)CrossRefGoogle Scholar
  30. 30.
    Bohm, HJ, Stahl, M, "Structure-based Library Design: Molecular Modelling Merges with Combinatorial Chemistry." Curr. Opin. Chem. Biol. 4(3) 283–286 (2000)CrossRefGoogle Scholar
  31. 31.
    Spivack, JL, Cawse, JN, Whisenhunt, DW, Johnson, BF, Shalyaev, KV, Male, J, Pressman, EJ, Ofori, JY, Soloveichik, GL, Patel, BP, Chuck, TL, Smith, DJ, Jordan, TM, Brennan, MR, Kilmer, RJ, Williams, ED, "Combinatorial Discovery of Metal Co-catalysts for the Carbonylation of Phenol." Appl. Catal. A Gen. 254(1) 5–25 (2003)CrossRefGoogle Scholar
  32. 32.
    Anonymous, Speciality Chemicals Magazine, 21 (7) 16–17 (2001)Google Scholar
  33. 33. Scholar
  34. 34.
    Chisholm, BJ, Potyrailo, R, Cawse, J, Shaffer, R, Brennan, M, Molaison, C, Whisenhunt, D, Flanagan, B, Olson, D, Akhave, J, Saunders, D, Mehrabi, A, Licon, M, "The Development of Combinatorial Chemistry Methods for Coating Development I. Overview of the Experimental Factory." Prog. Org. Coat. 45 313–321 (2002)CrossRefGoogle Scholar
  35. 35.
    Cawse, JN, Olson, D, Chisholm, BJ, Brennan, M, Sun, T, Flanagan, W, Akhave, J, Mehrabi, A, Saunders, D, "Combinatorial Chemistry Methods for Coating Development V: Generating a Combinatorial Array of Uniform Coatings Samples." Prog. Org. Coat. 47(2) 128–135 (2003)CrossRefGoogle Scholar
  36. 36.
    Potyrailo, RA, Chisholm, BJ, Olson, DR, Brennan, MJ, Molaison, CA, “Development of Combinatorial Chemistry Methods for Coatings: High-Throughput Screening of Abrasion Resistance of Coatings Libraries.” Anal. Chem. 74(19) 5105–5111 (2002)CrossRefGoogle Scholar
  37. 37.
    Chisholm, BJ, Potyrailo, RA, Shaffer, R, Cawse, J, Brennan, MJ, Molaison, CA, "Combinatorial Chemistry Methods for Coating Development III. Development of a High Throughput Screening Method for Abrasion Resistance: Correlation with Conventional Methods and the Effects of Abrasion Mechanism." Prog. Org. Coat. 47 112 (2003)CrossRefGoogle Scholar
  38. 38.
    Iden, R, Schrof, W, Hadeler, J, Lehmann, S, "Combinatorial Materials Research in the Polymer Industry: Speed Versus Flexibility." Macromol. Rapid Commun. 24 63–72 (2003)CrossRefGoogle Scholar
  39. 39.
    Schrof, W, Lehmann, S, Hadeler, J, Oetter, G, Dralle-Voss, G, Beck, E, Paulus, W, Bentz, S, Proc. 2001 Athens Conference on Coatings: Science and Technology, 27 283–296 (2001)Google Scholar
  40. 40.
    Wicks, DA, Bach, J, 29th Proceedings of the International Waterborne, High-Solids, and Powder Coatings Symposium, 1–24 (2002)Google Scholar
  41. 41.
    Bach, H, Gurtler, C, Nowak, S, Eur. Coat. J., 3 22–27 (2004)Google Scholar
  42. 42.
    Webster, DC, Bennet, J, Kuebler, S, Kossuth, MB, Jonasdottir, S, "High Throughput Workflow for the Development of Coatings." JCT CoatingsTech., 1(6) 34–39 (2004)Google Scholar
  43. 43. Scholar
  44. 44.
    Chisholm, BJ, Christianson, DA, Webster, DC, “Combinatorial Materials Research Applied to the Development of New Surface Coatings II. Process Capability Analysis of the Coating Formulation Workflow.” Prog. Org. Coat., in press (2006)Google Scholar
  45. 45.
    Chiang, MYM, Song, R, Crosby, AJ, Karim, A, Chiang, CK, Amis, EJ, "Combinatorial Approach to the Edge Delamination Test for Thin Film Reliability-Adaptability and Variability." Thin Solid Films, 476 379–385 (2005)CrossRefGoogle Scholar
  46. 46.
    Walls, HJ, Berg, RF, Amis, EJ, "Muti-sample Couette Viscometer for Polymer Formulations." Meas. Sci. Technol., 16 137–143 (2005)CrossRefGoogle Scholar
  47. 47.
    Forster, AM, Zhang, W, Crosby, AJ, Stafford, CM, "A Multilens Measurement Platform for High-Throughput Adhesion Measurements." Meas. Sci. Technol., 16 81–89 (2005)CrossRefGoogle Scholar
  48. 48.
    Eidelman, N, Raghavan, D, Forster, AM, Amis, EJ, Karim, A, “Combinatorial Approach to Characterizing Epoxy Curing.” Macromol. Rapid Commun., 25 259–263 (2004)CrossRefGoogle Scholar
  49. 49. Scholar
  50. 50.
    Majumdar, P, Webster, DC, "Influence of Solvent Composition and Degree of Reaction on the Formation of Surface Microtopography in a Thermoset Siloxane-Urethane System." Polymer, 47 4172–4181 (2006)CrossRefGoogle Scholar
  51. 51.
    Majumdar, P, Webster, DC, "Preparation of Siloxane-Urethane Coatings having Spontaneously Formed Stable Biphasic Microtopograpical Surfaces." Macromolecules, 38 5857–5859 (2005)CrossRefGoogle Scholar
  52. 52.
    Kendall, K, “The Adhesion and Surface Energy of Elastic Solids.” J. Phys. D: Appl. Phys., 4 1186–1195 (1971)CrossRefGoogle Scholar
  53. 53.
    Singer, IL, Kohl, JG, Patterson, M, “Mechanical Aspects of Silicone Coatings for Hard Foulant Control.” Biofouling, 16 301–309 (2001)CrossRefGoogle Scholar
  54. 54.
    Brady, RF, Singer, IL, “Mechanical Factors Flags Line- Encoding Genes of Proteus mirabilis.” Biofouling, 15 73–81 (2000)Google Scholar
  55. 55. Scholar
  56. 56.
    Swain, GWJ, Schultz, MP, Griffith, JR, Snyder, S, Proc. Workshop on Emerging Non-metallic Materials for the Marine Environment, 160–169 (1997)Google Scholar
  57. 57.
    Kohl, JG, Singer, IL, “Pull-off Behaviour of Epoxy Bounded to Silicone Duplex Coatings.” Prog. Org. Coat., 36 15–20 (1999)CrossRefGoogle Scholar
  58. 58.
    Stafslien, SJ, Bahr, JA, Feser, JM, Weisz, JC, Chisholm, BJ, Ready, TE, Boudjouk, P, J. Comb. Chem., 8(2) 156–162 (2006)CrossRefGoogle Scholar
  59. 59. Scholar
  60. 60.
    Chisholm, BJ, Potyrailo, RA, Cawse, JN, Shaffer, RE, Brennan, MR, Molaison, CA, Prog. Org. Coat., 47 120–127 (2003)CrossRefGoogle Scholar
  61. 61.
    Pyzdek, T, The Six Sigma Handbook. McGraw-Hill, New York, (2003)Google Scholar

Copyright information


Authors and Affiliations

  1. 1.Center for Nanoscale Science and EngineeringNorth Dakota State UniversityFargoUSA
  2. 2.Department of Coatings and Polymeric MaterialsNorth Dakota State UniversityFargoUSA

Personalised recommendations