Journal of Coatings Technology and Research

, Volume 3, Issue 4, pp 249–255 | Cite as

Some complementary scratch resistance characterization methods

  • Lan Mi
  • Hao Ling
  • Weidian ShenEmail author
  • Rose Ryntz
  • Beth Wichterman
  • Alex Scholten


In the characterization of mar/scratch resistance of coatings/materials with single-probe techniques, the probe usually scrapes the tested surface under a constant load or increasing load, followed by dimensional measurements of the scratch, identification of the critical force at which cracking/fracture occurs, or evaluation with optical instruments. Due to a variety of coatings/materials properties and various application requirements, the single-probe method may not provide pertinent characterization of coatings/materials in their applications in some cases. Three complementary test methods are presented in this article: i.e., a crack density measurement used for fragile thermoplastic olefin (TPO), a repeated scratching test, and a cross-scratching test used for glazing materials for automobile windows.


Atomic force microscopy dynamic mechanical properties hardness scratch resistance surface analysis adhesion chip resistance mechanical properties physical properties automotive-OEM coatings-substrate interface plastics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Khurshudov, A. and Kato, K., “Volume Increase Phenomena in Reciprocal Scratching of Polycarbonate Studied by Atomic Force Microscopy,” J. Vac. Sci. Technol., B, 13 (5), 1938–1944 (1995).CrossRefGoogle Scholar
  2. (2).
    Shen, W., Ji, C., Jones, F.N., Everson, M.P., and Ryntz, R.A., “Measuring Scratch Resistance and Microhardness of Crosslinked Coatings with a Scanning Force Microscope,” Polym. Mater. Sci. Eng., 74, 346 (1996).Google Scholar
  3. (3).
    Shen, W., Ji, C., Jones, F.N., Everson, M.P., and Ryntz, R.A., “Measurement by Scanning Force Microscopy of the Scratch and Mar Resistance of Surface Coatings,” Surf. Coat. Int., 79 (6), 253 (1996).Google Scholar
  4. (4).
    Shen, W., Smith, S.M., Jones, F.N., Ji, C., Ryntz, R.A., and Everson, M.P., “Use of a Scanning Probe Microscope to Measure Marring Mechanisms and Microhardness of Crosslinked Coatings,” J. Coat. Technol., 69, No. 873, 123 (1997).CrossRefGoogle Scholar
  5. (5).
    Jones, F.N., Shen, W., Smith, S.M., Huang, Z., and Ryntz, R.A., “Studies of Microhardness and Mar Resistance Using a Scanning Probe Microscope,” Proc. Org. Coat., 34 (1–4), 119 (1998).CrossRefGoogle Scholar
  6. (6).
    Han, Y.C., Schmitt, S., and Friendrich, K., “Nanoscale Indentation and Scratch of Short Carbon Fiber Reinforced PEEK/PTFE Composite Blend by Atomic Force Microscope Lithography,” Appl. Composite Mater., 6 (1), 1–18 (1999).CrossRefGoogle Scholar
  7. (7).
    Ryntz, R.A., Abell, B.D., Pollano, G.M., Nguyen, L.H., and Shen, W.C., “Scratch Resistance Behavior of Model Coating Systems,” J. Coat. Technol., 72, No. 904, 47 (2000).CrossRefGoogle Scholar
  8. (8).
    Shen, W.C., Jiang, B., and Jones, F.N., “Measurement of Mar Resistance and Study of Marring Mechanism of Polymeric Coatings with Scanning Probe Microscope,” J. Coat. Technol., 72, No. 907, 89 (2000).CrossRefGoogle Scholar
  9. (9).
    Du, B., VanLandingham, M.R., Zhang, Q., and He, T., “Direct Measurement of Plowing Friction and Wear of a Polymer Thin Film Using the Atomic Force Microscope,” J. Mater. Res., 16 (5) 1487–1492 (2001).CrossRefGoogle Scholar
  10. (10).
    Jardret, V., Zahouani, H., Loubet, J.L., and Mathia, T.G., “Understanding and Quantification of Elastic and Plastic Deformation During a Scratch Test,” Wear, 218 (1), 8–14 (1998).CrossRefGoogle Scholar
  11. (11).
    Consiglio, R., Randall, N.X., Bellaton, B., and von Stebut, J., “The Nano-Scratch Tester (NST) as a New Tool for Assessing the Strength of Ultrathin Hard Coatings and the Mar Resistance of Polymer Films,” Thin Solid Films, 332 (1–2), 151–156 (1998).CrossRefGoogle Scholar
  12. (12).
    Jardret, V., Lucas, B.N., Oliver, W., and Ramamurthy, A.C., “Scratch Durability of Automotive Clear Coatings: A Quantitative, Reliable and Robust Methodology,” J. Coat. Technol., 72, No. 907, 79 (2000).CrossRefGoogle Scholar
  13. (13).
    Bertrand-Lambotte, P., Loubet, J.L., Verpy, C., and Pavan, S., “Understanding of Automotive Clearcoats Scratch Resistance,” Thin Solid Films, 420, 281–286 (2002).CrossRefGoogle Scholar
  14. (14).
    Shen, W., Sun, J., Liu, Z., Mao, W., Nordstrom, J.D., Ziemer, P.D., and Jones, F.N., “Methods for Study of Mechanical and Tribological Properties of Hard and Soft Coatings with a Nano-Indenter,” J. Coat. Technol. Res., 1, No. 2, 117 (2004).CrossRefGoogle Scholar
  15. (15).
    VanLandingham, M.R., Sung, L.P., Chang, N.K., Wu, T.Y., Chang, S.H., and Jardret, V., “Measurement Approaches to Develop a Fundamental Understanding of Scratch and Mar Resistance,” J. Coat. Technol. Res., 1, No. 4, 257 (2004).CrossRefGoogle Scholar
  16. (16).
    Ni, B.Y., and leFaou, A., “Scratching Behavior of Polymer Films Using Blunt Spherical Styli,” J. Mater. Sci., 31 (15), 3955–3963 (1996).CrossRefGoogle Scholar
  17. (17).
    Kody, R.S., and Martin, D.C., “Quantitative Characterization of Surface Deformation in Polymer Composites Using Digital Image Analysis,” Polym. Eng. Sci., 36 (2), 298–304 (1996).CrossRefGoogle Scholar
  18. (18).
    Briscoe, B.J., Pelillo, E., and Sinha, S.K., “Characterization of the Scratch Deformation Mechanisms for Poly(methylmethacrylate) Using Surface Optical Reflectivity,” Polym. Int., 43 (4), 359–367 (1997).CrossRefGoogle Scholar
  19. (19).
    Adamsons, K., Blackman, G., Gregorovich, B., Lin, L., and Matheson, R., “Oligomers in the Evolution of Automotive Clearcoats: Mechanical Performance Testing as a Function of Exposure,” Prog. Org. Coat., 34 (1–4), 64–74 (1998).CrossRefGoogle Scholar
  20. (20).
    Briscoe, B.J., Delfino, A., and Pelillo, E., “Single-pass Pendulum Scratching of Poly(styrene) and Poly(methylmethacrylate),” Wear, 229, 319–328 (1999).CrossRefGoogle Scholar
  21. (21).
    Chu, J., Xiang, C., Sue, H.J., and Hollis, R.D., “Scratch Resistance of Mineral-Filled Polypropylene Materials,” Polym. Eng. Sci., 40 (4), 944–955 (2000).CrossRefGoogle Scholar
  22. (22).
    Gauthier, C. and Schirrer, R., “Time and Temperature Dependence of the Scratch Properties of Poly(methylmethacrylate) Surfaces,” J. Mater. Sci., 35 (9), 2121–2130 (2000).CrossRefGoogle Scholar
  23. (23).
    Xiang, C., Sue, H.J., Chu, J., and Coleman, B., “Scratch Behavior and Material Property Relationship in Polymers,” J. Polym. Sci., Part B: Polym. Phys., 39 (1), 47–59 (2001).CrossRefGoogle Scholar
  24. (24).
    Gauthier, C., Lafaye, S., and Schirrer, R., “Elastic Recovery of a Scratch in a Polymetric Surface: Experiments and Analysis,” Tribology International, 34 (7), 469–479 (2001).CrossRefGoogle Scholar
  25. (25).
    Yaneff, P.V., Adamsons, K., Ryntz, R.A., and Britz, D., “Structure/Property Relationships in Flexible Alkoxysilane Automotive Coatings,” J. Coat. Technol., 74, No. 933, 135 (2002).CrossRefGoogle Scholar
  26. (26).
    Ryntz, R.A. and Britz, D., “Scratch Resistance Behavior of Automotive Plastic Coatings,” J. Coat. Technol., 74, No. 925, 77 (2002).CrossRefGoogle Scholar
  27. (27).
    Krupicka, A., Johansson, M., and Hult, A., “Use and Interpretation of Scratch Tests on Ductile Polymer Coatings,” Prog. Org. Coat., 46 (1), 32–48 (2003).CrossRefGoogle Scholar
  28. (28).
    Wichterman, B. and Welland, W., “Scratch Damage and Behavior of Painted and Mold-in-Color Interior Materials Using a New Test Methodology,” Conference Proceedings, SPE Automotive TPO Global Conference, Dearborn, MI, October 3–6, 2005.Google Scholar
  29. (29).
    Welland, W., Ryntz, R., and Witchterman, B., “Paint vs. Mold-in-Color: Damage Resistance in Interior Applications,” Conference Proceedings, SPE Automotive TPO Global Conference, Dearborn, MI, October 3–6, 2005.Google Scholar
  30. (30).
    Lin, L., Blackman, G.S., and Matheson, R.R., in Microstructure and Micotribology of Polymer Surface, Tsukruk, V.V. and Wahl, K.J. (Eds.), published by The American Chemical Society, Chapter 27, 1999.Google Scholar
  31. (31).
    Lin, L., Blackman, G.S., and Matheson, R.R., “A New Approach to Characterize Scratch and Mar Resistance of Automotive Coatings,” Prog. Org. Coat., 40 (1–4), 85–91 (2000).CrossRefGoogle Scholar
  32. (32).
    Courter, J.L. and Kamenetzky, E.A., “Creative Advances in Coating Technology,” presented at the 5th Nurnberg Congress, Nurnberg, Germany, April 1999.Google Scholar
  33. (33).
    Shen, W., Jiang, B., Gasworth, S.M., and Mukamal, H., “Study of Tribological Properties of Coating/Substrate System in Micrometer and Nanometer Scales with a Scanning Probe Microscope,” Tribology International, 34 (2), 135–142 (2001).CrossRefGoogle Scholar
  34. (34).
    Ryntz, R.A., “Attaining Durable Painted Plastic Components,” J. Coat. Technol. Res., 2, No. 5, 351 (2005).CrossRefGoogle Scholar
  35. (35).
    Chu, J., Rumao, L., and Coleman, B., “Scratch and Mar Resistance of Filled Polypropylene Materials,” Polym. Eng. Sci., 38 (11), 1906–1914 (1998).CrossRefGoogle Scholar
  36. (36).
    Arruda, E.M., Ahzi, S., Li, Y., and Ganesan, A., “Rate Dependent Deformation of Semi-Crystalline Polypropylene Near Room Temperature,” J. Eng. Mater. Tech., 119, 216–222 (1997).CrossRefGoogle Scholar
  37. (37).
    Sun, J., Mukamal, H., Liu, Z., and Shen, W., “Analysis of the Taber Test in Characterization of Automotive Side Windows,” Tribology Letters, 13 (1), 49–54 (2002).CrossRefGoogle Scholar

Copyright information

© OCCA 2006

Authors and Affiliations

  • Lan Mi
    • 1
  • Hao Ling
    • 1
  • Weidian Shen
    • 1
    Email author
  • Rose Ryntz
    • 2
  • Beth Wichterman
    • 2
  • Alex Scholten
    • 3
  1. 1.Surface Science and Nanotribology LaboratoryEastern Michigan UniversityYpsilanti
  2. 2.Visteon CorporationDearborn
  3. 3.Exatec GmbH & Co. KGBergisch GladbachGermany

Personalised recommendations