Advertisement

Artificial Moral Agents: A Survey of the Current Status

  • José-Antonio CervantesEmail author
  • Sonia López
  • Luis-Felipe Rodríguez
  • Salvador Cervantes
  • Francisco Cervantes
  • Félix Ramos
Review

Abstract

One of the objectives in the field of artificial intelligence for some decades has been the development of artificial agents capable of coexisting in harmony with people and other systems. The computing research community has made efforts to design artificial agents capable of doing tasks the way people do, tasks requiring cognitive mechanisms such as planning, decision-making, and learning. The application domains of such software agents are evident nowadays. Humans are experiencing the inclusion of artificial agents in their environment as unmanned vehicles, intelligent houses, and humanoid robots capable of caring for people. In this context, research in the field of machine ethics has become more than a hot topic. Machine ethics focuses on developing ethical mechanisms for artificial agents to be capable of engaging in moral behavior. However, there are still crucial challenges in the development of truly Artificial Moral Agents. This paper aims to show the current status of Artificial Moral Agents by analyzing models proposed over the past two decades. As a result of this review, a taxonomy to classify Artificial Moral Agents according to the strategies and criteria used to deal with ethical problems is proposed. The presented review aims to illustrate (1) the complexity of designing and developing ethical mechanisms for this type of agent, and (2) that there is a long way to go (from a technological perspective) before this type of artificial agent can replace human judgment in difficult, surprising or ambiguous moral situations.

Keywords

Artificial agent Ethical agent Moral dilemma Machine ethics 

Notes

References

  1. Abbass, H. A., Petraki, E., Merrick, K., Harvey, J., & Barlow, M. (2016). Trusted autonomy and cognitive cyber symbiosis: Open challenges. Cognitive Computation,8(3), 385–408.CrossRefGoogle Scholar
  2. Alaieri, F., & Vellino, A. (2016). Ethical decision making in robots: Autonomy, trust and responsibility. In International conference on social robotics (pp. 159–168). Cham: Springer.Google Scholar
  3. Allen, C., Smit, I., & Wallach, W. (2005). Artificial morality: Top-down, bottom-up, and hybrid approaches. Ethics and Information Technology,7(3), 149–155.CrossRefGoogle Scholar
  4. Amstutz, M. R. (2013). International ethics: Concepts, theories, and cases in global politics. New York: Rowman & Littlefield Publishers.Google Scholar
  5. Anderson, M., & Anderson, S. L. (2007a). Machine ethics: Creating an ethical intelligent agent. AI Magazine,28(4), 15–26.Google Scholar
  6. Anderson, M., & Anderson, S. L. (2007b). The status of machine ethics: A report from the AAAI symposium. Minds and Machines,17(1), 1–10.CrossRefGoogle Scholar
  7. Anderson, M., & Anderson, S. L. (2008). Ethical healthcare agents. In M. Sordo, S. Vaidya, & L. C. Jain (Eds.), Advanced computational intelligence paradigms in healthcare-3 (pp. 233–257). Berlin: Springer.CrossRefGoogle Scholar
  8. Anderson, M., & Anderson, S. L. (2010). Robot be good. Scientific American,303(4), 72–77.CrossRefGoogle Scholar
  9. Anderson, M., & Anderson, S. L. (2014). Geneth: A general ethical dilemma analyzer. In Twenty-eighth AAAI conference on artificial intelligence (pp. 253–261).Google Scholar
  10. Anderson, M., Anderson, S. L., & Armen, C. (2004). Towards machine ethics. In Proceedings of the AOTP’04The AAAI-04 workshop on agent organizations: Theory and practice.Google Scholar
  11. Anderson, M., Anderson, S. L., & Armen, C. (2005). Medethex: Toward a medical ethics advisor. In Proceedings of the AAAI 2005 Fall symposium on caring machines: AI in elder care (pp. 9–16).Google Scholar
  12. Anderson, M., Anderson, S. L., & Armen, C. (2006a). An approach to computing ethics. IEEE Intelligent Systems,21(4), 56–63.CrossRefGoogle Scholar
  13. Anderson, M., Anderson, S. L., & Armen, C. (2006b). Medethex: A prototype medical ethics advisor. In Proceedings of the national conference on artificial intelligence (Vol. 21, No. 2, pp. 1759–1765). Menlo Park, CA/Cambridge, MA: AAAI Press/MIT Press.Google Scholar
  14. Andino, C. (2015). Place of ethics between technical knowledge. A philosophical approach. Revista Científica de la UCSA,2(2), 85–94.Google Scholar
  15. Arkin, R. (2009). Governing lethal behavior in autonomous robots. London: Chapman and Hall/CRC.CrossRefGoogle Scholar
  16. Arkin, R. C. (2010). The case for ethical autonomy in unmanned systems. Journal of Military Ethics,9(4), 332–341.CrossRefGoogle Scholar
  17. Arkin, R. (2018). Lethal autonomous systems and the plight of the noncombatant. In R. Kiggins (Ed.), The political economy of robots (pp. 317–326). Cham: Springer.CrossRefGoogle Scholar
  18. Arkoudas, K., Bringsjord, S., & Bello, P. (2005). Toward ethical robots via mechanized deontic logic. In AAAI Fall symposium on machine ethics (pp. 17–23).Google Scholar
  19. Ashrafian, H. (2015). Artificial intelligence and robot responsibilities: Innovating beyond rights. Science and Engineering Ethics,21(2), 317–326.CrossRefGoogle Scholar
  20. Bandyopadhyay, D., & Sen, J. (2011). Internet of things: Applications and challenges in technology and standardization. Wireless Personal Communications,58(1), 49–69.CrossRefGoogle Scholar
  21. Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., et al. (2012). Smart cities of the future. The European Physical Journal Special Topics,214(1), 481–518.CrossRefGoogle Scholar
  22. Beauvisage, T. (2009). Computer usage in daily life. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 575–584). ACM.Google Scholar
  23. Bedaf, S., Draper, H., Gelderblom, G. J., Sorell, T., & de Witte, L. (2016). Can a service robot which supports independent living of older people disobey a command? The views of older people, informal carers and professional caregivers on the acceptability of robots. International Journal of Social Robotics,8(3), 409–420.CrossRefGoogle Scholar
  24. Belloni, A., Berger, A., Besson, V., Boissier, O., Bonnet, G., Bourgne, G., et al. (2014). Towards a framework to deal with ethical conflicts in autonomous agents and multi-agent systems. In CEPE 2014 well-being, flourishing, and ICTs (pp. 1–10).Google Scholar
  25. Belloni, A., Berger, A., Boissier, O., Bonnet, G., Bourgne, G., Chardel, P. A., et al. (2015). Dealing with ethical conflicts in autonomous agents and multi-agent systems. In 1st International workshop on artificial intelligence and ethics at the 29th AAAI conference on artificial intelligence.Google Scholar
  26. Blass, J. A. (2016). Interactive learning and analogical chaining for moral and commonsense reasoning. In Thirtieth AAAI conference on artificial intelligence (pp. 4289–4290).Google Scholar
  27. Blass, J. A., & Forbus, K. D. (2015). Moral decision-making by analogy: Generalizations versus exemplars. In Twenty-ninth AAAI conference on artificial intelligence (pp. 501–507).Google Scholar
  28. Bonnemains, V., Saurel, C., & Tessier, C. (2018). Embedded ethics: Some technical and ethical challenges. Ethics and Information Technology,20(1), 41–58.CrossRefGoogle Scholar
  29. Borenstein, J., & Arkin, R. (2019). Robots, ethics, and intimacy: The need for scientific research. In D. Berkich, & M. d'Alfonso (Eds.), On the cognitive, ethical, and scientific dimensions of artificial intelligence (pp. 299–309). Cham: Springer.CrossRefGoogle Scholar
  30. Borst, J. P., & Anderson, J. R. (2015). Using the ACT-R cognitive architecture in combination with fMRI data. In B. Forstmann, & E. J. Wagenmakers (Eds.), An introduction to model-based cognitive neuroscience (pp. 339–352). Berlin: Springer.Google Scholar
  31. Brachman, R. J. (2002). Systems that know what they’re doing. IEEE Intelligent Systems,17(6), 67–71.CrossRefGoogle Scholar
  32. Briggs, G., & Scheutz, M. (2015). Sorry, I can’t do that”: Developing mechanisms to appropriately reject directives in human–robot interactions. In 2015 AAAI Fall symposium series (pp. 1–5).Google Scholar
  33. Bringsjord, S., Sundar, G. N., Thero, D., & Si, M. (2014). Akratic robots and the computational logic thereof. In Proceedings of the IEEE 2014 international symposium on ethics in engineering, science, and technology (pp. 1–8). IEEE Press.Google Scholar
  34. Brundage, M. (2014). Limitations and risks of machine ethics. Journal of Experimental & Theoretical Artificial Intelligence,26(3), 355–372.CrossRefGoogle Scholar
  35. Capraro, V., & Rand, D. G. (2018). Do the right thing: Experimental evidence that preferences for moral behavior, rather than equity or efficiency per se, drive human prosociality. Forthcoming in Judgment and Decision Making,13(1), 99–111.Google Scholar
  36. Cervantes, J. A., Rodríguez, L. F., López, S., Ramos, F., & Robles, F. (2016). Autonomous agents and ethical decision-making. Cognitive Computation,8(2), 278–296.CrossRefGoogle Scholar
  37. Cervantes, J. A., Rosales, J. H., López, S., Ramos, F., & Ramos, M. (2017). Integrating a cognitive computational model of planning and decision-making considering affective information. Cognitive Systems Research,44, 10–39.CrossRefGoogle Scholar
  38. Choi, D., & Langley, P. (2018). Evolution of the icarus cognitive architecture. Cognitive Systems Research,48, 25–38.CrossRefGoogle Scholar
  39. Coeckelbergh, M. (2010). Moral appearances: Emotions, robots, and human morality. Ethics and Information Technology,12(3), 235–241.CrossRefGoogle Scholar
  40. Conway, P., & Gawronski, B. (2013). Deontological and utilitarian inclinations in moral decision making: A process dissociation approach. Journal of Personality and Social Psychology,104(2), 216–235.CrossRefGoogle Scholar
  41. Cook, D. J., & Das, S. K. (2012). Pervasive computing at scale: Transforming the state of the art. Pervasive and Mobile Computing,8(1), 22–35.CrossRefGoogle Scholar
  42. Cristani, M., & Burato, E. (2009). Approximate solutions of moral dilemmas in multiple agent system. Knowledge and Information Systems,18(2), 157–181.CrossRefGoogle Scholar
  43. Czubenko, M., Kowalczuk, Z., & Ordys, A. (2015). Autonomous driver based on an intelligent system of decision-making. Cognitive Computation,7(5), 569–581.CrossRefGoogle Scholar
  44. Dehghani, M., Tomai, E., Forbus, K. D., & Klenk, M. (2008). An integrated reasoning approach to moral decision-making. In Twenty-third AAAI conference on artificial intelligence (pp. 1280–1286).Google Scholar
  45. Deng, B. (2015). Machine ethics: The robot’s dilemma. Nature,523(7558), 24–26.CrossRefGoogle Scholar
  46. Dennis, L. A., Fisher, M., Lincoln, N. K., Lisitsa, A., & Veres, S. M. (2016a). Practical verification of decision-making in agent-based autonomous systems. Automated Software Engineering,23(3), 305–359.CrossRefGoogle Scholar
  47. Dennis, L., Fisher, M., Slavkovik, M., & Webster, M. (2016b). Formal verification of ethical choices in autonomous systems. Robotics and Autonomous Systems,77, 1–14.CrossRefGoogle Scholar
  48. Epting, S. (2016). A different trolley problem: The limits of environmental justice and the promise of complex moral assessments for transportation infrastructure. Science and Engineering Ethics,22(6), 1781–1795.CrossRefGoogle Scholar
  49. Erdur, M. (2018). Moral realism and the incompletability of morality. The Journal of Value Inquiry,52(2), 227–237.CrossRefGoogle Scholar
  50. Fagin, R., Halpern, J. Y., & Vardi, M. Y. (1990). A nonstandard approach to the logical omniscience problem. In Proceedings of the 3rd conference on theoretical aspects of reasoning about knowledge (pp. 41–55). Morgan Kaufmann Publishers Inc.Google Scholar
  51. Feil-Seifer, D., & Matarić, M. J. (2011). Socially assistive robotics. IEEE Robotics and Automation Magazine,18(1), 24–31.CrossRefGoogle Scholar
  52. Ferrell, O. C., & Gresham, L. G. (1985). A contingency framework for understanding ethical decision making in marketing. The Journal of Marketing,49(3), 87–96.CrossRefGoogle Scholar
  53. Fleetwood, J., Vaught, W., Feldman, D., Gracely, E., Kassutto, Z., & Novack, D. (2000). Medethex online: A computer-based learning program in medical ethics and communication skills. Teaching and Learning in Medicine,12(2), 96–104.CrossRefGoogle Scholar
  54. Fumagalli, M., & Priori, A. (2012). Functional and clinical neuroanatomy of morality. Brain,135(7), 2006–2021.CrossRefGoogle Scholar
  55. Gerdes, A., & Øhrstrøm, P. (2015). Issues in robot ethics seen through the lens of a moral turing test. Journal of Information, Communication and Ethics in Society,13(2), 98–109.CrossRefGoogle Scholar
  56. Gogoll, J., & Müller, J. F. (2017). Autonomous cars: In favor of a mandatory ethics setting. Science and Engineering Ethics,23(3), 681–700.CrossRefGoogle Scholar
  57. Govindarajulu, N. S., Bringjsord, S., & Ghosh, R. (2018). One formalization of virtue ethics via learning. arXiv preprint arXiv:180507797.
  58. Greene, J. D., Morelli, S. A., Lowenberg, K., Nystrom, L. E., & Cohen, J. D. (2008). Cognitive load selectively interferes with utilitarian moral judgment. Cognition,107(3), 1144–1154.CrossRefGoogle Scholar
  59. Greene, J., Rossi, F., Tasioulas, J., Venable, K. B., & Williams, B. C. (2016). Embedding ethical principles in collective decision support systems. In Thirtieth AAAI conference on artificial intelligence (pp. 4147–4151).Google Scholar
  60. Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science,293(5537), 2105–2108.CrossRefGoogle Scholar
  61. Guerini, M., Pianesi, F., & Stock, O. (2015). Is it morally acceptable for a system to lie to persuade me? In Workshops at the twenty-ninth AAAI conference on artificial intelligence (pp. 53–60).Google Scholar
  62. Han, T. A., & Pereira, L. M. (2018). Evolutionary machine ethics. In O. Bendel (Ed.), Handbuch Maschinenethik (pp. 1–25). Wiesbaden: Springer.Google Scholar
  63. Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron,95(2), 245–258.CrossRefGoogle Scholar
  64. Honarvar, A. R., & Ghasem-Aghaee, N. (2009). Casuist BDI-agent: A new extended BDI architecture with the capability of ethical reasoning. In International conference on artificial intelligence and computational intelligence (pp. 86–95). Berlin: Springer.Google Scholar
  65. Howard, D., & Muntean, I. (2016). A minimalist model of the artificial autonomous moral agent (AAMA). In The 2016 AAAI Spring symposium series (pp. 217–225).Google Scholar
  66. Hughes, G. J. (2001). Routledge philosophy guidebook to Aristotle on ethics. London: Routledge.Google Scholar
  67. Kahn, P. H., Jr., Kanda, T., Ishiguro, H., Gill, B. T., Ruckert, J. H., Shen, S., et al. (2012). Do people hold a humanoid robot morally accountable for the harm it causes? In Proceedings of the seventh annual ACM/IEEE international conference on HumanRobot Interaction (pp. 33–40). ACM.Google Scholar
  68. Kirchin, S. (Ed.). (2012). What is metaethics? In Metaethics (pp. 1–20). London: Palgrave Macmillan.Google Scholar
  69. Kishi, T., Hashimoto, K., & Takanishi, A. (2017). Human like face and head mechanism. In A. Goswami, & P. Vadakkepat (Eds.), Humanoid robotics: A reference (pp. 1–26). Dordrecht: Springer.Google Scholar
  70. Kruglanski, A. W., & Gigerenzer, G. (2011). Intuitive and deliberate judgments are based on common principles. Psychological Review,118(1), 97–109.CrossRefGoogle Scholar
  71. Laird, J. E. (2008). Extending the soar cognitive architecture. Frontiers in Artificial Intelligence and Applications,171, 224–235.Google Scholar
  72. Laird, J. E., Kinkade, K. R., Mohan, S., & Xu, J. Z. (2012). Cognitive robotics using the soar cognitive architecture. In Workshops at the twenty-sixth AAAI conference on artificial intelligence (pp. 46–54).Google Scholar
  73. Laird, J. E., Lebiere, C., & Rosenbloom, P. S. (2017). A standard model of the mind: Toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and robotics. AI Magazine,38(4), 13–26.CrossRefGoogle Scholar
  74. Lombrozo, T. (2009). The role of moral commitments in moral judgment. Cognitive Science,33(2), 273–286.CrossRefGoogle Scholar
  75. Long, L. N., & Kelley, T. D. (2010). Review of consciousness and the possibility of conscious robots. Journal of Aerospace Computing, Information, and Communication,7(2), 68–84.CrossRefGoogle Scholar
  76. Madl, T., & Franklin, S. (2015). Constrained incrementalist moral decision making for a biologically inspired cognitive architecture. In R. Trappl (Ed.), A construction manual for robots’ ethical systems (pp. 137–153). Cham: Springer.CrossRefGoogle Scholar
  77. Malle, B. F. (2016). Integrating robot ethics and machine morality: The study and design of moral competence in robots. Ethics and Information Technology,18(4), 243–256.CrossRefGoogle Scholar
  78. Malle, B. F., Scheutz, M., Arnold, T., Voiklis, J., & Cusimano, C. (2015). Sacrifice one for the good of many? People apply different moral norms to human and robot agents. In Proceedings of the tenth annual ACM/IEEE international conference on humanrobot interaction (pp. 117–124). ACM.Google Scholar
  79. Mermet, B., & Simon, G. (2016). Formal verification of ethical properties in multiagent systems. In ECAI 2016 workshop on ethics in the design of intelligent agents (EDIA’16). The Netherlands: The Hague.Google Scholar
  80. Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., et al. (2010). The iCub humanoid robot: An open-systems platform for research in cognitive development. Neural Networks,23(8), 1125–1134.CrossRefGoogle Scholar
  81. Mikhail, J. (2007). Universal moral grammar: Theory, evidence and the future. Trends in Cognitive Sciences,11(4), 143–152.CrossRefGoogle Scholar
  82. Moor, J. H. (2006). The nature, importance, and difficulty of machine ethics. IEEE Intelligent Systems,21(4), 18–21.CrossRefGoogle Scholar
  83. Mordoch, E., Osterreicher, A., Guse, L., Roger, K., & Thompson, G. (2013). Use of social commitment robots in the care of elderly people with dementia: A literature review. Maturitas,74(1), 14–20.CrossRefGoogle Scholar
  84. Mostafa, S. A., Ahmad, M. S., & Mustapha, A. (2019). Adjustable autonomy: A systematic literature review. Artificial Intelligence Review,51(2), 149–186.CrossRefGoogle Scholar
  85. Mostafa, S. A., Mustapha, A., Mohammed, M. A., Ahmad, M. S., & Mahmoud, M. A. (2018). A fuzzy logic control in adjustable autonomy of a multi-agent system for an automated elderly movement monitoring application. International Journal of Medical Informatics,112, 173–184.CrossRefGoogle Scholar
  86. Pellizzoni, S., Siegal, M., & Surian, L. (2010). The contact principle and utilitarian moral judgments in young children. Developmental Science,13(2), 265–270.CrossRefGoogle Scholar
  87. Podschwadek, F. (2017). Do androids dream of normative endorsement? On the fallibility of artificial moral agents. Artificial Intelligence and Law,25(3), 325–339.CrossRefGoogle Scholar
  88. Reig, S., Norman, S., Morales, C. G., Das, S., Steinfeld, A., & Forlizzi, J. (2018). A field study of pedestrians and autonomous vehicles. In Proceedings of the 10th international conference on automotive user interfaces and interactive vehicular applications (pp. 198–209). ACM.Google Scholar
  89. Rodríguez, L. F., & Ramos, F. (2014). Development of computational models of emotions for autonomous agents: A review. Cognitive Computation,6(3), 351–375.CrossRefGoogle Scholar
  90. Schaich Borg, J., Hynes, C., Van Horn, J., Grafton, S., & Sinnott-Armstrong, W. (2006). Consequences, action, and intention as factors in moral judgments: An fMRI investigation. Journal of Cognitive Neuroscience,18(5), 803–817.CrossRefGoogle Scholar
  91. Scheutz, M., & Malle, B. F. (2014). Think and do the right thing: A plea for morally competent autonomous robots. In Proceedings of the IEEE 2014 international symposium on ethics in engineering, science, and technology (p. 9). IEEE Press.Google Scholar
  92. Schroeder, M. (2017). Normative ethics and metaethics. In T. McPherson, & D. Plunkett (Eds.), The Routledge handbook of metaethics (pp. 674–686). London: Routledge.CrossRefGoogle Scholar
  93. Sharkey, A., & Sharkey, N. (2012). Granny and the robots: Ethical issues in robot care for the elderly. Ethics and Information Technology,14(1), 27–40.CrossRefGoogle Scholar
  94. Shigemi, S. (2018). ASIMO and humanoid robot research at Honda. In A. Goswami, & P. Vadakkepat (Eds.), Humanoid robotics: A reference (pp. 1–36). Springer.Google Scholar
  95. Tikhanoff, V., Cangelosi, A., & Metta, G. (2011). Integration of speech and action in humanoid robots: iCub simulation experiments. IEEE Transactions on Autonomous Mental Development,3(1), 17–29.CrossRefGoogle Scholar
  96. Trafton, G., Hiatt, L., Harrison, A., Tamborello, F., Khemlani, S., & Schultz, A. (2013). ACT-R/E: An embodied cognitive architecture for human–robot interaction. Journal of Human–Robot Interaction,2(1), 30–55.CrossRefGoogle Scholar
  97. Van Riemsdijk, M. B., Jonker, C.M., & Lesser, V. (2015). Creating socially adaptive electronic partners: Interaction, reasoning and ethical challenges. In Proceedings of the 2015 international conference on autonomous agents and multiagent systems (pp. 1201–1206). International Foundation for Autonomous Agents and Multiagent Systems.Google Scholar
  98. Van Staveren, I. (2007). Beyond utilitarianism and deontology: Ethics in economics. Review of Political Economy,19(1), 21–35.CrossRefGoogle Scholar
  99. Van Wynsberghe, A., & Robbins, S. (2018). Critiquing the reasons for making artificial moral agents. Science and Engineering Ethics,25(3), 1–17.Google Scholar
  100. Vanderelst, D., & Winfield, A. (2018). An architecture for ethical robots inspired by the simulation theory of cognition. Cognitive Systems Research,48, 56–66.CrossRefGoogle Scholar
  101. Vernon, D., Metta, G., & Sandini, G. (2007). A survey of artificial cognitive systems: Implications for the autonomous development of mental capabilities in computational agents. IEEE Transactions on Evolutionary Computation,11(2), 151–180.CrossRefGoogle Scholar
  102. Viroli, M., Pianini, D., Montagna, S., & Stevenson, G. (2012). Pervasive ecosystems: A coordination model based on semantic chemistry. In Proceedings of the 27th annual ACM symposium on applied computing (pp. 295–302). ACM.Google Scholar
  103. Von der Pfordten, D. (2012). Five elements of normative ethics—A general theory of normative individualism. Ethical Theory and Moral Practice,15(4), 449–471.CrossRefGoogle Scholar
  104. Von Wright, G. H. (1951). Deontic logic. Mind,60(237), 1–15.CrossRefGoogle Scholar
  105. Waldrop, M. M. (2015). Autonomous vehicles: No drivers required. Nature News,518(7537), 20.CrossRefGoogle Scholar
  106. Walker, L. J., & Hennig, K. H. (2004). Differing conceptions of moral exemplarity: Just, brave, and caring. Journal of Personality and Social Psychology,86(4), 629–647.CrossRefGoogle Scholar
  107. Wallach, W. (2008). Implementing moral decision making faculties in computers and robots. AI & Society,22(4), 463–475.CrossRefGoogle Scholar
  108. Wallach, W. (2010). Robot minds and human ethics: The need for a comprehensive model of moral decision making. Ethics and Information Technology,12(3), 243–250.CrossRefGoogle Scholar
  109. Wallach, W., Allen, C., & Smit, I. (2008). Machine morality: Bottom-up and top-down approaches for modelling human moral faculties. AI & Society,22(4), 565–582.CrossRefGoogle Scholar
  110. Wallach, W., Franklin, S., & Allen, C. (2010). A conceptual and computational model of moral decision making in human and artificial agents. Topics in Cognitive Science,2(3), 454–485.CrossRefGoogle Scholar
  111. Wang, S., Wan, J., Zhang, D., Li, D., & Zhang, C. (2016). Towards smart factory for industry 4.0: A self-organized multi-agent system with big data based feedback and coordination. Computer Networks,101, 158–168.CrossRefGoogle Scholar
  112. Wellman, M. P., & Rajan, U. (2017). Ethical issues for autonomous trading agents. Minds and Machines,27(4), 609–624.CrossRefGoogle Scholar
  113. Winfield, A. F., Blum, C., & Liu, W. (2014). Towards an ethical robot: Internal models, consequences and ethical action selection. In Conference towards autonomous robotic systems (pp. 85–96). Cham: Springer.Google Scholar
  114. Yampolskiy, R. V. (2013). Artificial intelligence safety engineering: Why machine ethics is a wrong approach. In V. Müller (Ed.), Philosophy and theory of artificial intelligence (pp. 389–396). Berlin: Springer.CrossRefGoogle Scholar
  115. Young, L., & Durwin, A. (2013). Moral realism as moral motivation: The impact of meta-ethics on everyday decision-making. Journal of Experimental Social Psychology,49(2), 302–306.CrossRefGoogle Scholar
  116. Zambonelli, F., & Viroli, M. (2011). A survey on nature-inspired metaphors for pervasive service ecosystems. International Journal of Pervasive Computing and Communications,7(3), 186–204.CrossRefGoogle Scholar
  117. Zieba, S., Polet, P., Vanderhaegen, F., & Debernard, S. (2010). Principles of adjustable autonomy: A framework for resilient human–machine cooperation. Cognition, Technology & Work,12(3), 193–203.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering, Centro Universitario de los VallesUniversidad de GuadalajaraAmecaMexico
  2. 2.Department of Computer ScienceInstituto Tecnológico de SonoraSonoraMexico
  3. 3.Department of Electronics, Systems and InformaticsInstituto Tecnológico y de Estudios Superiores de OccidenteTlaquepaqueMexico
  4. 4.Department of Computer ScienceCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalGuadalajaraMexico

Personalised recommendations