Advertisement

Ethical Challenges in Human Space Missions: A Space Refuge, Scientific Value, and Human Gene Editing for Space

  • Konrad SzocikEmail author
  • Ziba Norman
  • Michael J. Reiss
Original Research/Scholarship
  • 239 Downloads

Abstract

This article examines some selected ethical issues in human space missions including human missions to Mars, particularly the idea of a space refuge, the scientific value of space exploration, and the possibility of human gene editing for deep-space travel. Each of these issues may be used either to support or to criticize human space missions. We conclude that while these issues are complex and context-dependent, there appear to be no overwhelming obstacles such as cost effectiveness, threats to human life or protection of pristine space objects, to sending humans to space and to colonize space. The article argues for the rationality of the idea of a space refuge and the defensibility of the idea of human enhancement applied to future deep-space astronauts.

Keywords

Space ethics Space refuge Human mission to Mars Human enhancement Gene editing Bioethics Future studies 

Notes

References

  1. Abadie, L. J., Lloyd, C. W., & Shelhamer, M. J. (2015). Gravity, who needs it? NASA Studies Your Body in Space. Retrieved from https://www.nasa.gov/content/gravity-who-needs-it. Accessed 1 June 2019.
  2. Abney, K. (2019). Ethics of colonization: Arguments from existential risk. Futures, 110, 60–63.CrossRefGoogle Scholar
  3. Baum, S. D. (2009). Cost-benefit analysis of space exploration: Some ethical considerations. Space Policy, 25, 75–80.CrossRefGoogle Scholar
  4. Baum, S. D., Denkenberger, D. C., & Haqq-Misra, J. (2015). Isolated refuges for surviving global catastrophes. Futures, 72, 45–56.CrossRefGoogle Scholar
  5. Billings, L. (2019). Colonizing other planets is a bad idea. Futures, 110, 44–46.CrossRefGoogle Scholar
  6. Campa, R., Szocik, K., & Braddock, M. (2019). Why space colonization will be fully automated. Technological Forecasting and Social Change, 143, 162–171.CrossRefGoogle Scholar
  7. Chodas, P. W., & Yeomans, D. K. (1999). Predicting close approaches and estimating impact probabilities for near-Earth objects. Advances in the Astronautical Sciences, 103, 1–20.Google Scholar
  8. Church, G. (n. d.). Multigenic traits can have single genes with large impacts. Retrieved from http://arep.med.harvard.edu/gmc/protect.html. Accessed 1 June 2019.
  9. Clynes, M. E., & Kline, N. S. (1960). Cyborgs and space. Astronautics, 26–27, 74–76.Google Scholar
  10. Cockell, C. (2002). Mars is an awful place to live. Interdisciplinary Science Reviews, 27(1), 32–38.CrossRefGoogle Scholar
  11. Crawford, I. A. (2012). Dispelling the myth of robotic efficiency: Why human space exploration will tell us more about the Solar System than will robotic exploration alone. Astronomy and Geophysics, 53, 2.22–2.26.Google Scholar
  12. Cyranoski, D. (2018). Baby gene edits could affect a range of traits. Nature.  https://doi.org/10.1038/d41586-018-07713-2.CrossRefGoogle Scholar
  13. Cyranoski, D., & Ledford, H. (2018). Genome-edited baby claim provokes international outcry. Nature, 563, 607–608.CrossRefGoogle Scholar
  14. De La Torre, G. G., van Baarsen, B., Ferlazzo, F., Kanas, N., Weiss, K., Schneider, S., et al. (2012). Future perspectives on space psychology: Recommendations on psychosocial and neurobehavioural aspects of human spaceflight. Acta Astronautica, 81, 587–599.CrossRefGoogle Scholar
  15. De Waal, F. (2019). Prosocial primates: Cooperation and empathy. In Diversity in harmonyinsights from psychology: Proceedings of the 31st international congress of psychology (pp. 64–84). Wiley.Google Scholar
  16. Dzau, V. J., et al. (2019). Academies’ action plan for germline editing. Nature, 567, 175.  https://doi.org/10.1038/d41586-019-00813-7.CrossRefGoogle Scholar
  17. Garrett-Bakelman, F. E., et al. (2019). The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science, 364(eaau8650), 127–144.Google Scholar
  18. Gottlieb, J. (2019). Space colonization and existential risk. Journal of the American Philosophical Association.  https://doi.org/10.1017/apa.2019.12.CrossRefGoogle Scholar
  19. Green, B. P. (2019). Self-preservation should be humankind’s first ethical priority and therefore rapid space settlement is necessary. Futures, 110, 35–37.CrossRefGoogle Scholar
  20. Gyngell, C. (2017). Gene editing and the health of future generations. Journal of the Royal Society of Medicine, 110(7), 276–279.CrossRefGoogle Scholar
  21. Gyngell, C., Bowman-Smart, H., & Savulescu, J. (2019). Moral reasons to edit the human genome: Picking up from the Nuffield report. Journal of Medical Ethics.  https://doi.org/10.1136/medethics-2018-105084.CrossRefGoogle Scholar
  22. Haqq-Misra, J. (2019). Can deep altruism sustain space settlement? In K. Szocik (Ed.), The human factor in a mission to Mars, space and society. Cham: Springer.Google Scholar
  23. Jebari, K. (2015). Existential risks: Exploring a robust risk reduction strategy. Science and Engineering Ethics, 21(3), 541–554.CrossRefGoogle Scholar
  24. Kanas, N., Sandal, G., Boyd, J. E., Gushin, V. I., Manzey, D., North, R., et al. (2009). Psychology and culture during long-duration space missions. Acta Astronautica, 64(7–8), 659–677.CrossRefGoogle Scholar
  25. Landeret, E. S., et al. (2019). Adopt a moratorium on heritable genome editing. Nature, 567, 165–168.CrossRefGoogle Scholar
  26. Lanphier, E., et al. (2015). Don’t edit the human germ line. Nature, 519, 410–411.CrossRefGoogle Scholar
  27. Lessing, D. (1982). The making of the representative for planet 8. New York: Alfred A. Knopf.Google Scholar
  28. Marino, L. (2019). Humanity is not prepared to colonize Mars. Futures, 110, 15–18.CrossRefGoogle Scholar
  29. Munévar, G. (2014). Space exploration and human survival. Space Policy, 30(4), 197–201.CrossRefGoogle Scholar
  30. Munévar, G. (2019). An obligation to colonize outer space. Futures, 110, 38–40.CrossRefGoogle Scholar
  31. Munsie, M., & Gyngell, C. (2018). Ethical issues in genetic modification and why application matters. Current Opinion in Genetics & Development, 52, 7–12.CrossRefGoogle Scholar
  32. Musk, E. (2017). Making humans a multi-planetary species. New Space, 5(2), 46–61.CrossRefGoogle Scholar
  33. NASA. (2014). NASA’s journey to Mars. Retrieved from NASA Website https://www.nasa.gov/content/nasas-journey-to-mars. Accessed 1 June 2019.
  34. NASA. (2018). Space radiation risks. Retrieved from NASA Website https://www.nasa.gov/hrp/elements/radiation/risks. Accessed 1 June 2019.
  35. Oman-Reagan, M. P. (2019). Politics of planetary reproduction and the children of other worlds. Futures, 110, 19–23.CrossRefGoogle Scholar
  36. Parfit, D. (1984). Reasons and persons. Oxford: Clarendon Press.Google Scholar
  37. Persson, E. (2012). The moral standing of extraterrestrial life. Astrobiology, 12, 976–984.CrossRefGoogle Scholar
  38. Persson, E. (2019). Ethics for an uninhabited planet. In K. Szocik (Ed.), The human factor in a mission to Mars, space and society. Cham: Springer.Google Scholar
  39. Potthast, A. (2019). Alien attacks, hell gerbils, and assisted dying: Arguments against saving mere humanity. Futures, 110, 41–43.CrossRefGoogle Scholar
  40. Randolph, R. O., & McKay, C. P. (2014). Protecting and expanding the richness and diversity of life, an ethic for astrobiology research and space exploration. International Journal of Astrobiology, 13, 28–34.CrossRefGoogle Scholar
  41. Reiss, M. J., & Straughan, R. (1996). Improving nature? The science and ethics of genetic engineering. Cambridge: Cambridge University Press.Google Scholar
  42. Rovetto, R. J. (2013). The essential role of human spaceflight. Space Policy, 29(4), 225–228.CrossRefGoogle Scholar
  43. Rovetto, R. J. (2016). Defending spaceflight—The echoes of Apollo. Space Policy, 38, 68–78.CrossRefGoogle Scholar
  44. Schwartz, J. S. J. (2011). Our moral obligation to support space exploration. Environmental Ethics, 33(1), 67–88.CrossRefGoogle Scholar
  45. Schwartz, J. S. J. (2019). Space settlement: What’s the rush? Futures, 110, 56–59.CrossRefGoogle Scholar
  46. Schwartz, J. S. J. (forthcoming). The value of science in space exploration. Oxford: Oxford University Press.Google Scholar
  47. Shelhamer, M. (2017). Why send humans into space? Science and non-science motivations for human space flight. Space Policy, 42, 37–40.CrossRefGoogle Scholar
  48. Simonsen, L. C., & Zeitlin, C. (2017). Briefing to NAC HEO/SMD joint committee meeting Mars radiation environmentWhat have we learned? Retrieved from https://www.nasa.gov/sites/default/files/atoms/files/mars_radiation_environment_nac_july_2017_finaltagged.pdf. Accessed 1 June 2019.
  49. Smith, K. C. (2019). Homo reductio: Eco-nihilism and human colonization of other Worlds. Futures, 110, 31–34.CrossRefGoogle Scholar
  50. Smith, C. M., & Davies, E. (2012). Emigrating beyond earth: Human adaptation and space colonization. New York: Springer.CrossRefGoogle Scholar
  51. Stoner, I. (2017). Humans should not colonize Mars. Journal of the American Philosophical Association, 3(3), 334–353.CrossRefGoogle Scholar
  52. Szocik, K. (2015). Mars, human nature and the evolution of the psyche. Journal of the British Interplanetary Society, 68(12), 403–405.Google Scholar
  53. Szocik, K. (2019). Should and could humans go to Mars? Yes, but not now and not in the near future. Futures, 105, 54–66.CrossRefGoogle Scholar
  54. Szocik, K., Abood, S., & Shelhamer, M. (2018). Psychological and biological challenges of the Mars Mission viewed through the construct of the evolution of fundamental human needs. Acta Astronautica, 152, 793–799.CrossRefGoogle Scholar
  55. Szocik, K., Campa, R., Rappaport, M. B., & Corbally, C. (2019). Changing the paradigm on human enhancements. The special case of modifications to counter bone loss for manned Mars Missions. Space Policy, 48, 68–75.CrossRefGoogle Scholar
  56. Szocik, K., & Tachibana, K. (in press). Ethical considerations of human enhancement and artificial intelligence for space missions. Astropolitics.Google Scholar
  57. Szocik, K., & Wójtowicz, T. (2019). Human enhancement in space missions: From moral controversy to technological duty. Technology in Society, 59, 101156.  https://doi.org/10.1016/j.techsoc.2019.101156.CrossRefGoogle Scholar
  58. Tachibana, K. (2019). A Hobbesian qualm with space settlement. Futures, 110, 28–30.CrossRefGoogle Scholar
  59. Turchin, A. (2018). Approaches to the prevention of global catastrophic risks. Human Prospect, 7(2), 53–65.Google Scholar
  60. Valentine, D. (2012). Exit strategy: Profit, cosmology, and the future of humans in space. Anthropological Quarterly, 85(4), 1045–1067.CrossRefGoogle Scholar
  61. Wang, H., & Yang, H. (2019). Gene-edited babies: What went wrong and what could go wrong. PLoS Biology, 17(4), e3000224.  https://doi.org/10.1371/journal.pbio.3000224.CrossRefGoogle Scholar
  62. Weinberg, S. (2013). Response: Against manned space flight programs. Space Policy, 29, 229–230.CrossRefGoogle Scholar
  63. Zehr, P. E. (2018). Chasing captain America: How advances in science, engineering, and biotechnology will produce a superhuman. Toronto: ECW Press.Google Scholar
  64. Zeitlin, C., et al. (2013). Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science, 340(6136), 1080–1084.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of Information Technology and Management in RzeszowRzeszówPoland
  2. 2.UCL Institute of EducationLondonUK

Personalised recommendations