Advertisement

Science and Engineering Ethics

, Volume 25, Issue 1, pp 129–142 | Cite as

Tri-parent Baby Technology and Preservation of Lineage: An Analysis from the Perspective of Maqasid al-Shari’ah Based Islamic Bioethics

  • Abdul Halim IbrahimEmail author
  • Noor Naemah Abdul Rahman
  • Shaikh Mohd Saifuddeen
  • Madiha Baharuddin
Original Paper

Abstract

Tri-parent baby technology is an assisted reproductive treatment which aims to minimize or eliminate maternal inheritance of mutated mitochondrial DNA (mtDNA). The technology became popular following the move by the United Kingdom in granting license to a group of researchers from the Newcastle Fertility Centre, Newcastle University to conduct research on the symptoms of defective mtDNA. This technology differs from other assisted reproductive technology because it involves the use of gamete components retrieved from three different individuals. Indirectly, it affects the preservation of lineage which is important from an Islamic point of view. This paper aims to analyze and discuss the implications of the tri-parent technology on preservation of lineage from the perspective of Maqasid al-Shari’ah based the Islamic bioethics. The analysis shows that there are a few violations of the preservation of lineage, hence the tri-parent baby technology should not be permitted.

Keywords

Bioethics Maqasid al-Shariah Assisted reproduction Islamic bioethics Mitochondrial disorders Tri-parent baby technology 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors report no financial or commercial conflicts of interest.

References

  1. Abduljabbar, H. S., & Amin, R. (2009). Assisted reproductive technology in Saudi Arabia. Saudi Medical Journal, 30(4), 461–464.Google Scholar
  2. Abdullah, A. B. (2014). An analysis of Islamic Jurisprudence (Fiqh) as applied Islamic ethics. Islam and Civilisational Renewal, 5(2), 183–203.CrossRefGoogle Scholar
  3. Adi Setia. (2015). Freeing maqāṣid & maṣlaḥah from surreptitious utilitarianism. This paper was presented at the International Conference on the Applications of Maqasid Al-Shari‘ah (Objectives Of The Shari‘ah) in Governance and Public Policy, Kuala Lumpur.Google Scholar
  4. Ahmad, R. (2004). Standard maslahah dan mafsadah dalam penentuan hukum Islam semasa di Malaysia. (Unpublished Ph.D. Thesis). Kuala Lumpur: Universiti Malaya.Google Scholar
  5. Akhmad, S. A., & Rosita, L. (2012). Islamic bioethics: The art of decision making. Indonesian Journal of Legal and Forensic Sciences, 2(1), 8–12.Google Scholar
  6. Allahbadia, G. N. (2015). Is the World of ART Ready for a Ménage à Trois? The Journal of Obstetrics and Gynecology of India, 65(2), 71–74.CrossRefGoogle Scholar
  7. al-Bar, M. A., & Chamsi-Pasha, H. (2015). Contemporary bioethics: Islamic perspective. London: Springer.CrossRefGoogle Scholar
  8. al-Buti, M. S. (1973). Dawabit al-maslahah fi al-Shari’ah al-Islamiyyah. Beirut: Muassasah al-Risalah.Google Scholar
  9. al-Fawwaz, T. S. (2013). al-Tatbiqat at-tibbiyyah ‘ala al-qawa’id al-fiqhiyyah. Riyadh: Dar al-Atlas al-Khadhra’.Google Scholar
  10. al-Ghazzali, A. H. (n.d.). Al-Mustaṣfā min al-ʿIlm al-Uṣūl. In H. Z. Hafiz (Eds.), (Vol. 2). Madinah: Syarkah al-Madinah al-Munawwara li al-Tiba'ah.Google Scholar
  11. al-Suyuti, J. A. (1997). al-Ashbah wa al-Nazair fi Qawaíd wa Furu’ al-Shafiíyyah. Makkah: Maktabah Nizar Mustafa al-Baz.Google Scholar
  12. al-Yubi, M. S. (2011). Maqasid al-Shari’ah al-Islamiyyah wa ‘Alaqatuha bi al-Adillah al-Tasyri’iyyah. Riyadh: Dar Ibn al-Jauzi.Google Scholar
  13. Amin, L., Sujak, S. F., Ramlee, S. N. S., Samian, A. L., Haron, M. S., & Mohamad, M. N. (2011). Educating the Ummah by introducing Islamic bioethics in genetics and modern biotechnology. Procedia Social and Behavioral Sciences, 15, 3399–3403.CrossRefGoogle Scholar
  14. Arbach, O. (2002). Ethical considerations in Syria regarding reproduction techniques. Medicine and Law, 21, 395–401.Google Scholar
  15. Ashur, M. a.-T. (2001). Maqasid al-Shari'ah al-Islamiyyah. Amman: Dar al-Nafaes.Google Scholar
  16. Auda, J. (2010). Maqāṣid al-Sharīʿah as philosophy of Islamic law: A systems approach. Kuala Lumpur: Islamic Book Trust & The International Institute of Islamic Thought.Google Scholar
  17. Auda, J. (2014). Mudahnya Maqasid Syariah. (M.B. Hamid, Trans.). Kuala Lumpur: PTS Islamika.Google Scholar
  18. Baylis, F. (2013). The ethics of creating children with three genetic parents. Reproductive BioMedicine Online, 26(6), 531–534.CrossRefGoogle Scholar
  19. Baylis, F. (2017). Human nuclear genome transfer (So-called mitochondrial replacement): Clearing the underbrush. Bioethics, 31(1), 7–19.CrossRefGoogle Scholar
  20. Bender, K., Schneider, P. M., & Rittner, C. (2000). Application of mtDNA sequence analysis in forensic casework for the identification of human remains. Forensic Science International, 113, 103–107.CrossRefGoogle Scholar
  21. Bredenoord, A. L., & Braude, P. (2011). Ethics of mitochondrial gene replacement: From bench to bedside. BMJ, 342, 87–89.Google Scholar
  22. Chapra, M. U. (2008). The Islamic vision of development in the light of Maqāsid al-sharī‘ah. Jeddah: Islamic Development Bank.Google Scholar
  23. Chiaratti, M. R., Meirelles, F. V., Wells, D., & Poulton, J. (2011). Therapeutic treatments of mtDNA diseases at the earliest stages of human development. Mitochondrion, 11, 820–828.CrossRefGoogle Scholar
  24. Claiborne, A., English, R., & Kahn, J. (2016). Mitochondrial replacement techniques: Ethical, social, and policy considerations. Washington: The National Academies Press.CrossRefGoogle Scholar
  25. Coble, M. D., Loreille, O. M., Wadhams, M. J., Edson, S. M., Maynard, K., Meyer, C. E., et al. (2009). Mystery solved: The identification of the two missing romanov children using DNA analysis. PLoS ONE, 4(3), e4838. doi: 10.1371/journal.pone.0004838.CrossRefGoogle Scholar
  26. Craven, L., Tuppen, H. A., Greggains, G. D., Harbottle, S. J., Murphy, J. L., Cree, L. M., et al. (2010). Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature, 465, 82–87.CrossRefGoogle Scholar
  27. Dar al-Ifta al-Misriyyah. (2017). My husband can’t have children. Is it allowed in Islam to seek fertilization with donor sperm? Dar al-Ifta al-Misriyyah, from http://eng.dar-alifta.org/foreign/ViewFatwa.aspx?ID=6962. Accessed January 27, 2017.
  28. Darnovsky, M. (2013). A slippery slope to human germline modification. Nature, 499, 127.CrossRefGoogle Scholar
  29. Daud, M. (1995). Perkahwinan menurut Islam. Kuala Lumpur: Utusan Publications and Distributors.Google Scholar
  30. Dimauro, S., & Davidzon, G. (2005). Mitochondrial DNA and disease. Annals of Medicine, 37, 222–232.CrossRefGoogle Scholar
  31. Dusuki, A. W., & Abozaid, A. (2007). A critical appraisal on the challenges of realizing Maqasid al-Shariah. IIUM Journal of Economics and Management, 15(2), 143–165.Google Scholar
  32. El-Hashemite, N. (1997). The Islamic view in genetic preventive procedures. The Lancet, 350, 223.CrossRefGoogle Scholar
  33. Ghaly, M. (2013). Islamic bioethics in the twenty-first century. Zygon, 48(3), 592–599.CrossRefGoogle Scholar
  34. Gill, P., Ivanov, P. L., Kimpton, C., Piercy, R., Benson, N., Tully, G., et al. (1994). Identification of the remains of the Romanov family by DNA analysis. Nature Genetics, 6, 130–135.CrossRefGoogle Scholar
  35. Haimes, E., & Taylor, K. (2015). Rendered invisible? The absent presence of egg providers in U.K. debates on the acceptability of research and therapy for mitochondrial disease. Monash Bioethics Review, 33, 360–378.CrossRefGoogle Scholar
  36. Hashi, A. A. (2015). Bioethics: A comparative study of its concept, issues and approaches. Kuala Lumpur: IIUM Press.Google Scholar
  37. Hellebrekers, D., Wolfe, R., Hendrickx, A., de Coo, I., de Die, C., Geraedts, J., et al. (2012). PGD and heteroplasmic mitochondrial DNA point mutations: a systematic review estimating the chance of healthy offspring. Human Reproduction Update, 18(4), 341–349.CrossRefGoogle Scholar
  38. Herbrand, C. (2017). Mitochondrial replacement techniques: Who are the potential users and will they benefit? Bioethics, 31(1), 46–54.CrossRefGoogle Scholar
  39. Holland, M., & Parsons, T. (1999). Mitochondrial DNA sequence analysis—Validation and use for forensic casework. Forensic Science Review, 11(1), 21–50.Google Scholar
  40. Holt, I., Harding, A., & Morgan-Hughes, J. (1988). Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature, 331(25), 717–719.CrossRefGoogle Scholar
  41. House of Lords Hansard. (2008). Lords Hansard, www.parliament.uk: http://www.publications.parliament.uk/pa/ld200708/ldhansrd/text/80204-0002.htm. Accessed August 4, 2014.
  42. Human Fertilisation and Embryology Authority. (2005). HFEA grants licence to Newcastle Centre at LIFE for Mitochondrial Research. Human Fertilisation and Embryology Authority, from http://www.hfea.gov.uk/671.html. Accessed August 4, 2014.
  43. Human Fertilisation and Embryology Authority. (2014). Third scientific review of the safety and efficacy of methods to avoid mitochondrial disease through assisted conception: 2014 update. London: Human Fertilisation and Embryology Authority.Google Scholar
  44. Human Fertilisation and Embryology Authority. (2015). Statement on mitochondrial donation. Human Fertilisation and Embryology Authority, from http://www.hfea.gov.uk/9606.html. Accessed March 30, 2015.
  45. Ibrahim, A. H., Rahman, N. N. A., & Saifuddeen, S. M. (2016). Advances in tri-parent baby technology: The bioethical challenge for Muslims. In M. H. Kamali, O. Bakar, D. A.-F. Batchelor, & R. Hashim (Eds.), Islamic perspectives on science and technology: Selected conference papers (pp. 289–299). Singapore: Springer.CrossRefGoogle Scholar
  46. Inhorn, M. C. (2006). Making Muslim babies: IVF and gamete donation. Culture, Medicine and Psychiatry, 30, 427–450.CrossRefGoogle Scholar
  47. Ishii, T. (2014). Potential impact of human mitochondrial replacement on global policy regarding germline gene modification. Reproductive BioMedicine Online, 29(2), 150–155.CrossRefGoogle Scholar
  48. Islam, S. (2013). Ethics of assisted reproductive medicine: A comparative study of western secular and Islamic bioethics. London: The International Institute of Islamic Thought.Google Scholar
  49. Jenuth, J., Peterson, A., Fu, K., & Shoubridge, E. (1996). Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nature Genetics, 14, 146–151.CrossRefGoogle Scholar
  50. Kasule, O. H. (2015). A medical perspective on preservation of human progeny. In S. M. Saifuddeen (Ed.), Preservation of human progeny in the age of biotechnology (pp. 45–56). Kuala Lumpur: Institut Kefahaman Islam Malaysia.Google Scholar
  51. Legge, M., & Fitzgerald, R. (2013). Numerical identity: The creation of tri-parental embryos to correct inherited mitochondrial disease. The New Zealand Medical Journal, 126(1385), 71–75.Google Scholar
  52. Meirelles, F., & Smith, L. (1997). Mitochondrial genotype segregation in a mouse heteroplasmic lineage produced by embryonic karyoplast transplantation. Genetics, 145, 445–451.Google Scholar
  53. Meirelles, F., & Smith, L. (1998). Mitochondrial genotype segregation during preimplantation development in mouse heteroplasmic embryos. Genetics, 148, 877–884.Google Scholar
  54. Mitalipov, S., & Wolf, D. P. (2014). Clinical and ethical implications of mitochondrial gene transfer. Trends in Endocrinology and Metabolism, 25(1), 5–7.CrossRefGoogle Scholar
  55. Moosa, E. (2003). Human cloning in Muslim ethics. Voices Across Boundaries, 23–26.Google Scholar
  56. Muslim World League Islamic Fiqh Council. (2006). Resolutions of Islamic Fiqh Council Makkah Mukarramah. Makkah Mukarramah: Muslim World League Islamic Fiqh Council, from http://themwl.org/downloads/Resolutions-of-Islamic-Fiqh-Council-1.pdf. Accessed March 30, 2016.
  57. Nesbitt, V., Alston, C. L., Blakely, E. L., Fratter, C., Feeney, C. L., Poulton, J., et al. (2014). A national perspective on prenatal testing for mitochondrial disease. European Journal of Human Genetics, 22, 1255–1259.CrossRefGoogle Scholar
  58. Nisker, J. (2015). The latest thorn by any other name: Germ-line nuclear transfer in the name of “mitochondrial replacement”. Journal of Obstetrics and Gynaecology Canada, 37(9), 829–831.CrossRefGoogle Scholar
  59. Nor, S. N. M. (2010). Human genetic technologies and Islamic bioethics. In G. Pfleiderer, G. Brahier, & K. Lindpaintner (Eds.), GenEthics and religion (pp. 129–137). Basel: Karger.CrossRefGoogle Scholar
  60. Nordin, M. M. (2012). An Islamic perspective of assisted reproductive technologies. Bangladesh Journal of Medical Science, 11(4), 252–257.CrossRefGoogle Scholar
  61. Nordin, M. M. (2015). Islamic medical ethics amidst developing biotechnologies. In S. M. Saifuddeen (Ed.), Preservation of human progeny in the age of biotechnology (pp. 57–72). Kuala Lumpur: Institut Kefahaman Islam Malaysia.Google Scholar
  62. Nuffield Council on Bioethics. (2012). Novel techniques for the prevention of mitochondrial DNA disorders: An ethical reviews. London: Nuffield Council on Bioethics.Google Scholar
  63. Omar, A.M. (2013). Kedudukan anak tak sah taraf: Dari aspek pandangan Syarak, nasab dan pewarisan serta kekeluargaan Islam. This paper was presented at Kempen ‘Sah Nikah, Sah Nasab’, Bangi, Selangor.Google Scholar
  64. Palacios-Gonzalez, C. (2016). Mitochondrial replacement techniques: Egg donation, genealogy and eugenics. Monash Bioethics Review, 34, 37–51.CrossRefGoogle Scholar
  65. Pfeffer, G., Majamaa, K., Turnbull, D., Thorburn, D., & Chinnery, P. (2012). Treatment for mitochondrial disorders. Cochrane Database of Systematic Reviews (4), 1–39.Google Scholar
  66. Poulton, J., & Bindoff, L. (2008). Mitochondrial respiratory chain disorders. In J. Boeke et al. (Eds.), Encyclopedia of life sciences (Vol. 12, pp. 126–133). West Sussex: Wiley.Google Scholar
  67. Poulton, J., & Oakeshott, P. (2012). Nuclear transfer to prevent maternal transmission of mitochondrial DNA disease. BMJ, 345, 1–2.CrossRefGoogle Scholar
  68. Primorac, D., Andelinovic, S., Definis-Gojanovic, M., Drmic, I., Rezic, B., Baden, M., et al. (1996). Identification of war victims from mass graves in Croatia, Bosnia, and Herzegovina by use of standard forensic methods and DNA typing. Journal of Forensic Sciences, 41(5), 891–894.CrossRefGoogle Scholar
  69. Rahman, F. (2015). Kesihatan dan perubatan dalam tradisi Islam: Perubahan dan identiti. (W.M. Daud, & S.A. Abdullah, Trans.). Kuala Lumpur: Dewan Bahasa dan Pustaka.Google Scholar
  70. Raquib, A. (2015). Islamic ethics of technology. Kuala Lumpur: The Other Press.Google Scholar
  71. Sachedina, A. A. (2009). Islamic biomedical ethics : Principles and application. New York: Oxford University Press.CrossRefGoogle Scholar
  72. Saey, T. H. (2016). Risk identified in procedure for ‘three-parent babies’. ScienceNews, 189(13), 8.Google Scholar
  73. Saifuddeen, S. M., Rahman, N. N. A., Isa, N. M., & Baharuddin, A. (2014). Maqasid al-Shariah as a complementary framework to conventional bioethics. Science Engineering Ethics, 20, 317–327.CrossRefGoogle Scholar
  74. Sallevelt, S. C., Dreesen, J. C., Drüsedau, M., Spierts, S., Coonen, E., Tienen, F. H., et al. (2013). Preimplantation genetic diagnosis in mitochondrial DNA disorders: Challenge and success. Journal of Medical Genetics, 50, 125–132.CrossRefGoogle Scholar
  75. Salman, S. (2015). Ethical and Legal Thought on Mitochondrial Donation. Research Center for Islamic Legislation and Ethics, from http://www.cilecenter.org/en/articles-essays/ethical-and-legal-thought-on-mitochondrial-donation/. Accessed January 11, 2016.
  76. Schaefer, A. M., Taylor, R. W., Turnbull, D. M., & Chinnery, P. F. (2004). The epidemiology of mitochondrial disorders—past, present and future. Biochimica et Biophysica Acta, 1659, 115–120.CrossRefGoogle Scholar
  77. Schaefer, G. B., & Thompson, J. N., Jr. (2014). Medical genetics: An integrated approach. New York: McGraw-Hill Education.Google Scholar
  78. Scully, J. L. (2017). A mitochondrial story: Mitochondrial replacement, identity and narrative. Bioethics, 31(1), 37–45.CrossRefGoogle Scholar
  79. Serour, G. I. (2008). Islamic perspectives in human reproduction. Reproductive BioMedicine Online, 17(3), 34–38.CrossRefGoogle Scholar
  80. Tachibana, M., Amato, P., Sparman, M., Woodward, J., Sanchis, D. M., Ma, H., et al. (2013). Towards germline gene therapy of inherited mitochondrial diseases. Nature, 493, 627–631.CrossRefGoogle Scholar
  81. Tachibana, M., Sparman, M., Sritanaudomchai, H., Ma, H., Clepper, L., Woodward, J., et al. (2009). Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature, 461, 367–372.CrossRefGoogle Scholar
  82. Taylor, R. W., & Turnbull, D. M. (2005). Mitochondrial DNA mutations in human disease. Nature Reviews Genetics, 6(5), 389–402.CrossRefGoogle Scholar
  83. Thorburn, D. R. (2004). Mitochondrial disorders: Prevalence, myths and advances. Journal of Inherited Metabolic Disease, 27(3), 349–362.CrossRefGoogle Scholar
  84. Treff, N. R., Campos, J., Tao, X., Levy, B., Ferry, K. M., & Scott, R. T., Jr. (2012). Blastocyst preimplantation genetic diagnosis (PGD) of a mitochondrial DNA disorder. Fertility and Sterility, 98(5), 1236–1240.CrossRefGoogle Scholar
  85. Tur-Kaspa, I., Jeelani, R., & Doraiswamy, P. M. (2014). Preimplantation genetic diagnosis for inherited neurological disorders. Nature Reviews Neurology, 10, 417–424.CrossRefGoogle Scholar
  86. Uthman, M. R. (2012). al-Jinum: Qadaya fiqhiyyah. Kaherah: Dar al-Kutub al-Misriyyah.Google Scholar
  87. Wallace, D. C., & Chalkia, D. (2013). Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harbor Perspectives in Biology, 5(11), 1–47.CrossRefGoogle Scholar
  88. Wallace, D. C., Singh, G., Lott, M. T., Hodge, J. A., Schurr, T. G., Lezza, A. M., et al. (1988). Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science, 242, 1427–1430.CrossRefGoogle Scholar
  89. Yamada, M., Emmanuele, V., Sanchez-Quintero, M. J., Sun, B., Lallos, G., Paull, D., et al. (2016). Genetic drift can compromise mitochondrial replacement by nuclear transfer in human oocytes. Cell Stem Cell, 18(6), 749–754.CrossRefGoogle Scholar
  90. Zhang, J., Liu, H., Luo, S., Chavez-Badiola, A., Liu, Z., Yang, M., et al. (2016). First live birth using human oocytes reconstituted by spindle nuclear transfer for mitochondrial DNA mutation causing Leigh Syndrome. Fertility and Sterility, 106(3), e375–e376.CrossRefGoogle Scholar
  91. Zhang, J., Liu, H., Luo, S., Lu, Z., Chávez-Badiola, A., Liu, Z., et al. (2017). Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reproductive Biomedicine Online, 34, 361–368.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Programme of Applied Science with Islamic StudiesAcademy of Islamic Studies, University of MalayaKuala LumpurMalaysia
  2. 2.Department of Fiqh and UsulAcademy of Islamic Studies, University of MalayaKuala LumpurMalaysia
  3. 3.Centre for Science and Environment StudiesInstitute of Islamic Understanding MalaysiaKuala LumpurMalaysia

Personalised recommendations