Methods for Practising Ethics in Research and Innovation: A Literature Review, Critical Analysis and Recommendations

  • Wessel Reijers
  • David Wright
  • Philip Brey
  • Karsten Weber
  • Rowena Rodrigues
  • Declan O’Sullivan
  • Bert Gordijn
Original Paper

Abstract

This paper provides a systematic literature review, analysis and discussion of methods that are proposed to practise ethics in research and innovation (R&I). Ethical considerations concerning the impacts of R&I are increasingly important, due to the quickening pace of technological innovation and the ubiquitous use of the outcomes of R&I processes in society. For this reason, several methods for practising ethics have been developed in different fields of R&I. The paper first of all presents a systematic search of academic sources that present and discuss such methods. Secondly, it provides a categorisation of these methods according to three main kinds: (1) ex ante methods, dealing with emerging technologies, (2) intra methods, dealing with technology design, and (3) ex post methods, dealing with ethical analysis of existing technologies. Thirdly, it discusses the methods by considering problems in the way they deal with the uncertainty of technological change, ethical technology design, the identification, analysis and resolving of ethical impacts of technologies and stakeholder participation. The results and discussion of our literature review are valuable for gaining an overview of the state of the art and serve as an outline of a future research agenda of methods for practising ethics in R&I.

Keywords

Practising ethics Research and innovation Ethics of technology Ethics assessment Ethical impact assessment 

Notes

Acknowledgements

This research was supported by the ADAPT Centre. The ADAPT Centre for Digital Content Technology is funded under the SFI Research Centres Programme (Grant 13/RC/2106) and is co-funded under the European Regional Development Fund. This research was partly conducted in the context of the project: Stakeholders Acting Together on the Ethical Impact Assessment of Research and Innovation—SATORI—which received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No 612231. The views expressed in this article are those of the authors alone and are in no way intended to represent those of the European Commission.

References

  1. Achterkamp, M. C., & Vos, J. F. J. (2008). Investigating the use of the stakeholder notion in project management literature, a meta-analysis. International Journal of Project Management, 26(7), 749–757. doi: 10.1016/j.ijproman.2007.10.001.CrossRefGoogle Scholar
  2. Addissie, A., Davey, G., Newport, M. J., Addissie, T., MacGregor, H., Feleke, Y., et al. (2014). A mixed-methods study on perceptions towards use of rapid ethical assessment to improve informed consent processes for health research in a low-income setting. BMC Medical Ethics, 15(1), 35. doi: 10.1186/1472-6939-15-35.CrossRefGoogle Scholar
  3. Adman, P., & Warren, L. (2000). Participatory sociotechnical design of organizations and information systems—An adaptation of ETHICS methodology. Journal of Information Technology, 15(1), 39–51. doi: 10.1080/026839600344393.CrossRefGoogle Scholar
  4. Albrechtslund, A. (2007). Ethics and technology design. Ethics and Information Technology, 9(1), 63–72. doi: 10.1007/s10676-006-9129-8.CrossRefGoogle Scholar
  5. Apel, K.-O. (1980). Towards a transformation of philosophy. (G. Adey and D. Frisby, Trans.). Routledge and Kegan Paul: London.Google Scholar
  6. Arellano, L. E., Willett, J. M., & Borry, P. (2011). International survey on attitudes toward ethics in health technology assessment: An exploratory study. International Journal of Technology Assessment in Health Care, 27(1), 50–54. doi: 10.1017/S0266462310001182.CrossRefGoogle Scholar
  7. Ashcroft, R. (1999). Ethics and health technology assessment. Monash Bioethics Review, 18(2), 15–24.CrossRefGoogle Scholar
  8. Autti-Ramo, I., & Makela, M. (2007). Ethical evaluation in health technology assessment reports: An eclectic approach. International Journal of Technology Assessment in Health Care, 23(1), 1–8. doi: 10.1017/S0266462307051501.CrossRefGoogle Scholar
  9. Bailey, M., Dittrich, D., & Kenneally, E. (2013). Applying ethical principles to information and communication technology research: A companion to the menlo report, (October), 14. Retrieved from http://www.caida.org/publications/papers/2013/menlo_report_companion_actual_formatted/menlo_report_companion_actual_formatted.pdf.
  10. Balmer, A. S., & Bulpin, K. J. (2013). Left to their own devices: Post-ELSI, ethical equipment and the international genetically engineered machine (iGEM) competition. BioSocieties, 8(3), 311–335. doi: 10.1057/biosoc.2013.13.CrossRefGoogle Scholar
  11. Beauchamp, T. L., & Childress, J. F. (2001). Principles of biomedical ethics. Oxford: Oxford University Press.Google Scholar
  12. Beekman, V., & Brom, F. W. A. (2007). Ethical tools to support systematic public deliberations about the ethical aspects of agricultural biotechnologies. Journal of Agricultural and Environmental Ethics, 20(1), 3–12. doi: 10.1007/s10806-006-9024-7.CrossRefGoogle Scholar
  13. Bitay, B., Brandtand, D., & Savelsberg, E. (2005). The global validity of ethics: Applying ethics to engineering and technology development. IFAC Proceedings Volumes (IFAC-PapersOnline), 16, 19–24.CrossRefGoogle Scholar
  14. Boenink, M., Swierstra, T., & Stemerding, D. (2010). Anticipating the interaction between technology and morality: A scenario study of experimenting with humans in bionanotechnology. Studies in Ethics, Law, and Technology, 4, 1. doi: 10.2202/1941-6008.1098.CrossRefGoogle Scholar
  15. Bohn, J., Coroama, V., Langheinrich, M., & Mattern, M. (2005). Social, economic, and ethical implications of ambient intelligence and ubiquitous computing. Ambient Intelligence, 10(5), 5–29. doi: 10.1007/3-540-27139-2_2.CrossRefGoogle Scholar
  16. Bombard, Y., Abelson, J., Simeonov, D., & Gauvin, F.-P. (2011). Eliciting ethical and social values in health technology assessment: A participatory approach. Social Science and Medicine, 73(1), 135–144. doi: 10.1016/j.socscimed.2011.04.017.CrossRefGoogle Scholar
  17. Borning, A., & Muller, M. (2012). Next steps for value sensitive design. In Proceedings of the 2012 ACM annual conference on human factors in computing systems—CHI’12, (pp. 1–10).Google Scholar
  18. Borup, M., Brown, N., Konrad, K., & Van Lente, H. (2006). The sociology of expectations in science and technology. Technology Analysis & Strategic Management, 18(3–4), 285–298. doi: 10.1080/09537320600777002.CrossRefGoogle Scholar
  19. Bose, U. (2012). An ethical framework in information systems decision making using normative theories of business ethics. Ethics and Information Technology, 14(1), 17–26. doi: 10.1007/s10676-011-9283-5.CrossRefGoogle Scholar
  20. Boucher, P., & Gough, C. (2012). Mapping the ethical landscape of carbon capture and storage. Poiesis Und Praxis, 9(3–4), 249–270. doi: 10.1007/s10202-012-0117-2.CrossRefGoogle Scholar
  21. Brans, J. P. (2004). The management of the future Ethics in OR: Respect, multicriteria management, happiness. European Journal of Operational Research, 153(2), 466–467. doi: 10.1016/S0377-2217(03)00166-8.CrossRefGoogle Scholar
  22. Braunack-Mayer, A. J. (2006). Ethics and health technology assessment: Handmaiden and/or critic? International Journal of Technology Assessment in Health Care, 22(3), 307–312. doi: 10.1017/S0266462306051191.CrossRefGoogle Scholar
  23. Brey, P. (2000). Disclosive computer ethics: The exposure and evaluation of embedded normativity in computer technology. Computers and Society, 30(4), 10–16.CrossRefGoogle Scholar
  24. Brey, P. (2012a). Anticipating ethical issues in emerging IT. Ethics and Information Technology, 14, 305–317. doi: 10.1007/s10676-012-9293-y.CrossRefGoogle Scholar
  25. Brey, P. (2012b). Anticipatory ethics for emerging technologies. NanoEthics, 6(1), 1–13. doi: 10.1007/s11569-012-0141-7.CrossRefGoogle Scholar
  26. Bruijnis, M. R. N., Blok, V., Stassen, E. N., & Gremmen, H. G. J. (2015). Moral lock-in in responsible innovation: The ethical and social aspects of killing day-old chicks and its alternatives. Journal of Agricultural and Environmental Ethics, 28(5), 939–960. doi: 10.1007/s10806-015-9566-7.CrossRefGoogle Scholar
  27. Burget, M., Bardone, E., & Pedaste, M. (2017). Definitions and conceptual dimensions of responsible research and innovation: A literature review. Science and Engineering Ethics, 23(1), 1–19. doi: 10.1007/s11948-016-9782-1.CrossRefGoogle Scholar
  28. Burls, A., Caron, L., Cleret de Langavant, G., Dondorp, W., Harstall, C., Pathak-Sen, E., et al. (2011). Tackling ethical issues in health technology assessment: A proposed framework. International Journal of Technology Assessment in Health Care, 27(3), 230–237. doi: 10.1017/S0266462311000250.CrossRefGoogle Scholar
  29. Carew, P. J., & Stapleton, L. (2013). Towards empathy: A human-centred analysis of rationality, ethics and praxis in systems development. AI & Society, 29(2), 149–166. doi: 10.1007/s00146-013-0472-0.CrossRefGoogle Scholar
  30. Carpenter, K. J., & Dittrich, D. (2013). Bridging the distance: Removing the technology buffer and seeking consistent ethical analysis in computer security research. Journal of Chemical Information and Modeling, 53(9), 1689–1699. doi: 10.1017/CBO9781107415324.004.Google Scholar
  31. Cotton, M. (2009). Evaluating the “ethical matrix” as a radioactive waste management deliberative decision-support tool. Environmental Values, 18(2), 153–176. doi: 10.3197/096327109X438044.CrossRefGoogle Scholar
  32. Decker, M. (2004). The role of ethics in interdisciplinary technology assessment. Poiesis & Praxis: International Journal of Technology Assessment and Ethics of Science, 2(2–3), 139–156. doi: 10.1007/s10202-003-0047-0.CrossRefGoogle Scholar
  33. DeJean, D., Giacomini, M., Schwartz, L., & Miller, F. A. (2009). Ethics in Canadian health technology assessment: A descriptive review. International Journal of Technology Assessment in Health Care, 25(4), 463–469. doi: 10.1017/S0266462309990390.CrossRefGoogle Scholar
  34. Doorn, N. (2012). Responsibility ascriptions in technology development and engineering: Three perspectives. Science and Engineering Ethics, 18(1), 69–90. doi: 10.1007/s11948-009-9189-3.CrossRefGoogle Scholar
  35. Drake, M. J., Gerde, V. W., & Wasieleski, D. M. (2009). Socially responsible modeling: A stakeholder approach to the implementation of ethical modeling in operations research. OR Spectrum, 33(1), 1–26. doi: 10.1007/s00291-009-0172-9.CrossRefGoogle Scholar
  36. Droste, S., Dintsios, C. M., & Gerber, A. (2010). Information on ethical issues in health technology assessment: How and where to find them. International Journal of Technology Assessment in Health Care, 26(4), 441–449. doi: 10.1017/S0266462310000954.CrossRefGoogle Scholar
  37. Duthie, K., & Bond, K. (2011). Improving ethics analysis in health technology assessment. International Journal of Technology Assessment in Health Care, 27(1), 64–70. doi: 10.1017/S0266462310001303.CrossRefGoogle Scholar
  38. Fassin, Y. (2000). Innovation and ethics ethical considerations in the innovation business. Journal of Business Ethics, 27(1/2), 193–203. doi: 10.1023/A:1006427106307.CrossRefGoogle Scholar
  39. Felt, U., Fochler, M., Muller, A., & Strassnig, M. (2008). Unruly ethics: On the difficulties of a bottom-up approach to ethics in the field of genomics. Public Understanding of Science, 18(3), 354–371. doi: 10.1177/0963662507079902.CrossRefGoogle Scholar
  40. Ferrari, A. (2010). Developments in the debate on nanoethics: Traditional approaches and the need for new kinds of analysis. NanoEthics, 4(1), 27–52. doi: 10.1007/s11569-009-0081-z.CrossRefGoogle Scholar
  41. Flipse, S. M., van der Sanden, M. C. A., & Osseweijer, P. (2013). The why and how of enabling the integration of social and ethical aspects in research and development. Science and Engineering Ethics, 19(3), 703–725. doi: 10.1007/s11948-012-9423-2.CrossRefGoogle Scholar
  42. Floridi, L. (2015). Tolerant paternalism: Pro-ethical design as a resolution of the dilemma of toleration. Science and Engineering Ethics. doi: 10.1007/s11948-015-9733-2.Google Scholar
  43. Foley, R. W., Bennett, I., & Wetmore, J. M. (2012). Practitioners’ views on responsibility: Applying nanoethics. NanoEthics, 6, 231–241. doi: 10.1007/s11569-012-0154-2.CrossRefGoogle Scholar
  44. Forsberg, E. (2004). The ethical matrix—A tool for ethical assessments of biotechnology Ellen–Marie Forsberg. Global Bioethics. doi: 10.1080/11287462.2004.10800856.Google Scholar
  45. Forsberg, E. M. (2007). Pluralism, the ethical matrix, and coming to conclusions. Journal of Agricultural and Environmental Ethics, 20, 455–468. doi: 10.1007/s10806-007-9050-0.CrossRefGoogle Scholar
  46. Forsberg, E. M., Thorstensen, E., Nielsen, R. Ø., & de Bakker, E. (2014). Assessments of emerging science and technologies: Mapping the landscape. Science and Public Policy, 41(3), 306–316. doi: 10.1093/scipol/scu025.CrossRefGoogle Scholar
  47. Friedman, B. (1996). Value-sensitive design. Interactions, 3(6), 16–23. doi: 10.1145/242485.242493.CrossRefGoogle Scholar
  48. Friedman, B., Kahn, P. H., & Borning, A. (2006). Value sensitive design and information systems. In K. E. Himma & H. T. Tavani (Eds.), Human–computer interaction and management information systems: Foundations (pp. 1–27). Hoboken, New Jersey: Wiley. doi: 10.1145/242485.242493.Google Scholar
  49. Gamborg, C. (2002). The acceptability of forest management practices: An analysis of ethical accounting and the ethical matrix. Forest Policy and Economics, 4(3), 175–186. doi: 10.1016/S1389-9341(02)00007-2.CrossRefGoogle Scholar
  50. Genus, A. (2006). Rethinking constructive technology assessment as democratic, reflective, discourse. Technological Forecasting and Social Change, 73(1), 13–26. doi: 10.1016/j.techfore.2005.06.009.CrossRefGoogle Scholar
  51. Geoghegan-Quinn, M. (2014). Responsible research & innovation. Brussels: European Union Publications Office.Google Scholar
  52. Graffigna, G., Bosio, A. C., & Olson, K. (2010). How do ethics assessments frame results of comparative qualitative research? A theory of technique approach. International Journal of Social Research Methodology, 13(4), 341–355. doi: 10.1080/13645570903209076.CrossRefGoogle Scholar
  53. Groves, C. (2013). Horizons of Care: From Future Imaginaries to Responsible Research and Innovation. In K. Konrad, C. Coenen, A. Dijkstra, C. Milburn, & H. Van Lente (Eds.), Shaping emerging technologies: Governance, innovation, discourse (pp. 185–202). Berlin: IOS Press.Google Scholar
  54. Groves, C. (2015). Logic of choice or logic of care? Uncertainty. Technological Mediation and Responsible Innovation. NanoEthics, 9(3), 321–333. doi: 10.1007/s11569-015-0238-x.Google Scholar
  55. Grunwald, A. (2000). Against over-estimating the role of ethics in technology. Science and Engineering Ethics, 6(2), 181–196. doi: 10.1007/s11948-000-0046-7.CrossRefGoogle Scholar
  56. Grunwald, A. (2001). The application of ethics to engineering and the engineer’s moral responsibility: Perspectives for a research agenda. Science and Engineering Ethics, 7(3), 415–428. doi: 10.1007/s11948-001-0063-1.CrossRefGoogle Scholar
  57. Grunwald, A. (2004). The normative basis of (health) technology assessment and the role of ethical expertise. Poiesis & Praxis: International Journal of Technology Assessment and Ethics of Science, 2, 175–193. doi: 10.1007/s10202-003-0050-5.CrossRefGoogle Scholar
  58. Grunwald, A. (2011). Responsible innovation: Bringing together technology assessment, applied ethics, and STS research. Enterprise and Work Innovation Studies IET, 7, 9–31.Google Scholar
  59. Habermas, J. (1990). Moral consciousness and communicative action. (C. Lenhardt and S. W. Nicholsen Trans.). Cambridge: MIT Press.Google Scholar
  60. Hauser, J., Tellis, G. J., & Griffin, A. (2006). Research on innovation: A review and agenda for marketing science. Marketing Science, 25(6), 687–717. doi: 10.1287/mksc.1050.0144.CrossRefGoogle Scholar
  61. Heintz, E., Lintamo, L., Hultcrantz, M., Jacobson, S., Levi, R., Munthe, C., et al. (2015). Framework for systematic identification of ethical aspects of healthcare technologies: The Sbu approach. International Journal of Technology Assessment in Health Care, 31(3), 124–130. doi: 10.1017/S0266462315000264.CrossRefGoogle Scholar
  62. Heleski, C. R., & Anthony, R. (2012). Science alone is not always enough: The importance of ethical assessment for a more comprehensive view of equine welfare. Journal of Veterinary Behavior: Clinical Applications and Research, 7(3), 169–178. doi: 10.1016/j.jveb.2011.08.003.CrossRefGoogle Scholar
  63. Herkert, J. R. (2001). Future directions in engineering ethics research: Microethics, macroethics and the role of professional societies. Science and Engineering Ethics, 7(3), 403–414. doi: 10.1007/s11948-001-0062-2.CrossRefGoogle Scholar
  64. Hirschheim, R., & Klein, H. K. (1994). Realizing emancipatory principles in information systems development: The case for ETHICS. MIS Quarterly, 18(1), 83–109. doi: 10.2307/249611.CrossRefGoogle Scholar
  65. Hofmann, B. (2005a). On value-judgements and ethics in health technology assessment. Poiesis Und Praxis, 3(4), 277–295. doi: 10.1007/s10202-005-0073-1.CrossRefGoogle Scholar
  66. Hofmann, B. (2005b). Toward a procedure for integrating moral issues in health technology assessment. International Journal of Technology Assessment in Health Care, 21(3), 312–318. doi: 10.1017/S0266462305050415.CrossRefGoogle Scholar
  67. Hofmann, B. M. (2008). Why ethics should be part of health technology assessment. International Journal of Technology Assessment in Health Care, 24(4), 423–429. doi: 10.1017/S0266462308080550.CrossRefGoogle Scholar
  68. Hofmann, B. (2014). Why not integrate ethics in HTA: Identification and assessment of the reasons. GMS Health Technology Assessment, 10, 1–9. doi: 10.3205/hta000120.Google Scholar
  69. Hofmann, B., Oortwijn, W., Cleemput, I., & Sacchini, D. (2014). Harmonization of ethics in health technology assessment: A revision of the socratic approach. International Journal of Technology Assessment in Health Care, 30(1), 3–9. doi: 10.1017/S0266462313000688.CrossRefGoogle Scholar
  70. Hummels, H., & de Leede, J. (2000). Teamwork and morality: Comparing lean production and sociotechnology. Journal of Business Ethics, 26, 75–88. doi: 10.1023/A:1006242516664.CrossRefGoogle Scholar
  71. Ihde, D. (1990). Technology and the lifeworld: From garden to earth. Bloomington and Indianapolis: Indiana University Press.Google Scholar
  72. Ikonen, V., & Kaasinen, E. (2008). Ethical assessment of future-oriented design scenarios. In T. W. Bynum, M. Calzarossa, I. de Lotto & S. Rogerson (Eds.), Ethicomp 2008, Pavia (pp. 433–445). Pavia: University of Pavia.Google Scholar
  73. Ikonen, V., Kaasinen, E., Heikkilä, P., & Niemelä, M. (2012). Human-driven design of micro- and nanotechnology based future sensor systems. Journal of Information, Communication and Ethics in Society, 13(2), 110–129. doi: 10.1108/JICES-07-2013-0021.CrossRefGoogle Scholar
  74. Jensen, K. K., Forsberg, E. M., Gamborg, C., Millar, K., & Sandøe, P. (2011). Facilitating ethical reflection among scientists using the ethical matrix. Science and Engineering Ethics, 17(3), 425–445. doi: 10.1007/s11948-010-9218-2.CrossRefGoogle Scholar
  75. Kaiser, M., Millar, K., Thorstensen, E., & Tomkins, S. (2007). Developing the ethical matrix as a decision support framework: GM fish as a case study. Journal of Agricultural and Environmental Ethics, 20(1), 65–80. doi: 10.1007/s10806-006-9023-8.CrossRefGoogle Scholar
  76. Kajikawa, Y., Usui, O., Hakata, K., Yasunaga, Y., & Matsushima, K. (2008). Structure of knowledge in the science and technology roadmaps. Technological Forecasting and Social Change, 75(1), 1–11. doi: 10.1016/j.techfore.2007.02.011.CrossRefGoogle Scholar
  77. Karafyllis, N. C. (2009). Facts or fiction? A critique on vision assessment as a tool for technology assessment. In P. Sollie & M. Duwell (Eds.), Evaluating new technologies: Methodological problems for the ethical assessment of technology developments. Heidelberg: Springer. doi: 10.1007/s13398-014-0173-7.2.Google Scholar
  78. Kaufman, S. R., Shim, J. K., & Russ, A. J. (2004). Revisiting the biomedicalization of aging: Clinical trends and ethical challenges. The Gerontologist, 44(6), 731–738. doi: 10.1093/geront/44.6.731.CrossRefGoogle Scholar
  79. Landeweerd, L., Townend, D., Mesman, J., & Van Hoyweghen, I. (2015). Reflections on different governance styles in regulating science: a contribution to “Responsible Research and Innovation”. Life Sciences, Society and Policy, 11(8), 1–22. doi: 10.1186/s40504-015-0026-y.Google Scholar
  80. Latour, B. (1994). On technical mediation—Philosophy, sociology, genealogy. Common Knowledge, 3(2), 29–64. doi: 10.1111/j.1365-294X.2010.04747.x.Google Scholar
  81. Le Dantec, C. A., Poole, E. S., & Wyche, S. P. (2009). Values as lived experience: Evolving value sensitive design in support of value discovery. In Proceedings of the 27th international conference on human factors in computing systems (CHI’09), (pp. 1141–1150).Google Scholar
  82. Lehoux, P., & Williams-Jones, B. (2007). Mapping the integration of social and ethical issues in health technology assessment. International Journal of Technology Assessment in Health Care, 1, 9–16. doi: 10.1017/s0266462307051513.CrossRefGoogle Scholar
  83. Leitch, S., & Warren, M. J. (2010). ETHICS: The past, present and future of socio-technical systems design. In: A. Tatnall (Ed.), History of computing. Learning from the past (pp. 189–197). Heidelberg: Springer.Google Scholar
  84. Light, B., & McGrath, K. (2010). Ethics and social networking sites: A disclosive analysis of facebook. Information Technology and People, 23(4), 290–311.CrossRefGoogle Scholar
  85. Lindfelt, L.-L., & Tornroos, J.-A. (2006). Ethics and value creation in business research: Comparing two approaches. European Journal of Marketing, 40(3/4), 328–351.CrossRefGoogle Scholar
  86. Lucivero, F., Swierstra, T., & Boenink, M. (2011). Assessing expectations: Towards a toolbox for an ethics of emerging technologies. NanoEthics, 5, 129–141. doi: 10.1007/s11569-011-0119-x.CrossRefGoogle Scholar
  87. Malsch, I. (2013). The just war theory and the ethical governance of research. Science and Engineering Ethics, 19(2), 461–486. doi: 10.1007/s11948-012-9357-8.CrossRefGoogle Scholar
  88. Manders-Huits, N. (2011). What values in design? The challenge of incorporating moral values into design. Science and Engineering Ethics, 17(2), 271–287. doi: 10.1007/s11948-010-9198-2.CrossRefGoogle Scholar
  89. Manders-Huits, N., & Van den Hoven, J. (2009). The need for a value-sensitive design of communication infrastructures. In P. Sollie & M. Duwell (Eds.), Evaluating new technologies: Methodological problems for the ethical assessment of technology developments. Heidelberg: Springer. doi: 10.1007/s13398-014-0173-7.2.Google Scholar
  90. Markus, M. L., & Mentzer, K. (2014). Foresight for a responsible future with ICT. Information Systems Frontiers, 16, 353–368. doi: 10.1007/s10796-013-9479-9.CrossRefGoogle Scholar
  91. Masclet, L., & Goujon, P. (2012). Implementing ethics in information systems, presuppositions and consequences in ethics and information systems. In Magda David Hercheui; Diane Whitehouse; William McIver; Jackie Phahlamohlaka. 10th International Conference on Human Choice and Computers (HCC), Sep 2012, Amsterdam, Netherlands. Springer, IFIP Advances in Information and Communication Technology, AICT-386 (pp. 287–298), 2012, ICT Critical Infrastructures and Society.Google Scholar
  92. Mepham, B. (2000). A framework for the ethical analysis of novel foods: The ethical matrix. Journal of Agricultural and Environmental Ethics, 12(2), 165–176. doi: 10.1023/A:1009542714497.CrossRefGoogle Scholar
  93. Mepham, B., Kaiser, M., Thorstensen, E., Tomkins, S., & Millar, K. (2006). Ethical matrix manual. The Hague: LEI.Google Scholar
  94. Mingers, J., & Walsham, G. (2010). Toward ethical information systems: The contribution of discourse ethics. MIS Quarterly, 34(4), 833–854.Google Scholar
  95. Mitcham, C. (1999). Why science, technology, and society studies? Bulletin of Science and Technology in Society, 19(2), 128–134.CrossRefGoogle Scholar
  96. Mittelstadt, B. D., Stahl, B. C., & Fairweather, N. Ben. (2015). How to shape a better future? Epistemic difficulties for ethical assessment and anticipatory governance of emerging technologies. Ethical Theory and Moral Practice. doi: 10.1007/s10677-015-9582-8.Google Scholar
  97. Mumford, E. (1995). Effective systems design and requirements analysis—The ethics approach. London: Macmillan Press Ltd. doi: 10.1017/CBO9781107415324.004.CrossRefGoogle Scholar
  98. Nickles, T. (1987). Methodology, heuristics, and rationality. In J. C. Pitt & M. Pera (Eds.), Rational changes in science. Dordrecht: D. Reidel Publishing Company.Google Scholar
  99. Niemela, M., Ikonen, V., Leikas, J., Kantola, K., Kulju, M., Tammela, A., et al. (2014). Human-driven design: A human-driven approach to the design of technology. IFIP Advances in Information and Communication Technology, 431, 78–91. doi: 10.1007/978-3-662-44208-1_8.CrossRefGoogle Scholar
  100. Nordmann, A. (2007). If and then: A critique of speculative nanoethics. NanoEthics, 1(1), 31–46. doi: 10.1007/s11569-007-0007-6.CrossRefGoogle Scholar
  101. Owen, R., Macnaghten, P., & Stilgoe, J. (2012). Responsible research and innovation: From science in society to science for society, with society. Science and Public Policy, 39(6), 751–760. doi: 10.1093/scipol/scs093.CrossRefGoogle Scholar
  102. Page, K. (2012). The four principles: can they be measured and do they predict ethical decision making? BMC Medical Ethics, 13(1), 10. doi: 10.1186/1472-6939-13-10.CrossRefGoogle Scholar
  103. Palm, E., & Hansson, S. O. (2006). The case for ethical technology assessment (eTA). Technological Forecasting and Social Change, 73(5), 543–558. doi: 10.1016/j.techfore.2005.06.002.CrossRefGoogle Scholar
  104. Pandza, K., & Ellwood, P. (2013). Strategic and ethical foundations for responsible innovation. Research Policy, 42(5), 1112–1125. doi: 10.1016/j.respol.2013.02.007.CrossRefGoogle Scholar
  105. Patenaude, J., Legault, G.-A., Beauvais, J., Bernier, L., Béland, J.-P., Boissy, P., et al. (2015). Framework for the analysis of nanotechnologies’ impacts and ethical acceptability: basis of an interdisciplinary approach to assessing novel technologies. Science and Engineering Ethics, 21(2), 293–315. doi: 10.1007/s11948-014-9543-y.CrossRefGoogle Scholar
  106. Polonsky, M. J. (1998). Incorporating ethics into business students’ research projects: A process approach. Journal of Business Ethics, 17(11), 1227–1241.CrossRefGoogle Scholar
  107. Potter, B. K., Avard, D., Graham, I. D., Entwistle, V. A., Caulfield, T. A., Chakraborty, P., et al. (2008). Guidance for considering ethical, legal, and social issues in health technology assessment: Application to genetic screening. International Journal of Technology Assessment in Health Care, 24(4), 412–422. doi: 10.1017/S0266462308080549.CrossRefGoogle Scholar
  108. Rainey, S., & Goujon, P. (2011). Toward a normative ethics for technology development. Journal of Information, Communication and Ethics in Society Society, 9(3), 157–179. doi: 10.1108/JICES-07-2013-0021.CrossRefGoogle Scholar
  109. Reed, G. S., & Jones, N. (2013). Toward modeling and automating ethical decision making: Design, implementation, limitations, and responsibilities. Topoi, 32(2), 237–250. doi: 10.1007/s11245-012-9127-x.CrossRefGoogle Scholar
  110. Rehg, W. (2015). Discourse ethics for computer ethics: A heuristic for engaged dialogical reflection. Ethics and Information Technology, 17(1), 27–39. doi: 10.1007/s10676-014-9359-0.CrossRefGoogle Scholar
  111. Reiter-Theil, S. (2004). Does empirical research make bioethics more relevant? “The embedded researcher” as a methodological approach. Medicine, Health Care and Philosophy, 7(1), 17–29. doi: 10.1023/B:MHEP.0000021846.20508.c8.CrossRefGoogle Scholar
  112. Riley, D. (2013). Hidden in plain view: Feminists doing engineering ethics, engineers doing feminist ethics. Science and Engineering Ethics, 19, 189–206. doi: 10.1007/s11948-011-9320-0.CrossRefGoogle Scholar
  113. Roberts, L. W. (1999). Ethical dimensions of psychiatric research: A constructive, criterion-based approach to protocol preparation. The research protocol ethics assessment tool (RePEAT). Biological Psychiatry, 46(8), 1106–1119. doi: 10.1016/S0006-3223(99)00146-8.CrossRefGoogle Scholar
  114. Roberts, E. B. (2007). Managing invention and innovation. Research Technology Management, 50(1), 35–54. doi: 10.1038/427679a.Google Scholar
  115. Rommetveit, K., Gunnarsdóttir, K., Jepsen, K. S., Bertilsson, T. M., Verrax, F., & Strand, R. (2013). The Technolife project: an experimental approach to new ethical frameworks for emerging science and technology. International Journal of Sustainable Development, 16(1/2), 23–45. doi: 10.1504/IJSD.2013.053789.CrossRefGoogle Scholar
  116. Saarni, S. I., Braunack-Mayer, A., Hofmann, B., & Van Der Wilt, G. J. (2011). Different methods for ethical analysis in health technology assessment: An empirical study. International Journal of Technology Assessment in Health Care, 27(4), 305–312. doi: 10.1017/S0266462311000444.CrossRefGoogle Scholar
  117. Sacchini, D., Virdis, A., Refolo, P., Pennacchini, M., & de Paula, I. C. (2009). Health technology assessment (HTA): Ethical aspects. Medicine, Health Care and Philosophy, 12(4), 453–457. doi: 10.1007/s11019-009-9206-y.CrossRefGoogle Scholar
  118. Sandman, L., & Heintz, E. (2014). Assessment vs. appraisal of ethical aspects of health technology assessment: Can the distinction be upheld? GMS Health Technology Assessment, 10, 05. doi: 10.3205/hta000121.Google Scholar
  119. Sassaman, L. (2010). Ethical guidelines for computer security researchers: “Be reasonable.” In: International conference on financial cryptography and data security (pp. 250–255). Berlin, Heidelberg: Springer.Google Scholar
  120. Schroeder, D., & Palmer, C. A. (2003). Technology assessment and the ethical matrix. Poiesis & Praxis, 1, 295–307. doi: 10.1007/s10202-003-0027-4.CrossRefGoogle Scholar
  121. Schumacher, E. G., & Wasieleski, D. M. (2013). Institutionalizing ethical innovation in organizations: An integrated causal model of moral innovation decision processes. Journal of Business Ethics, 113(1), 15–37. doi: 10.1007/s10551-012-1277-7.CrossRefGoogle Scholar
  122. Schummer, J. (2004). Societal and ethical impliations of nanotechnology—Meanings, interest groups, and social dynamics. Techne, 8, 56–87.Google Scholar
  123. Shilton, K. (2014). This is an intervention: Foregrounding and operationalizing ethics during technology design. In K. D. Pimple (Ed.), Emerging pervasive information and communication technologies (PICT) (pp. 176–192). Heidelberg: Springer. doi: 10.1007/978-94-007-6833-8.Google Scholar
  124. Singh, R., Wood, B., & Wood-Harper, T. (2007). Socio-technical design of the 21st century: A vision. IFIP International Federation for Information Processing, 235, 503–506. doi: 10.1007/978-0-387-72804-9_39.CrossRefGoogle Scholar
  125. Skorupinski, B., & Ott, K. (2002). Technology assessment and ethics. Poiesis & Praxis: International Journal of Technology Assessment and Ethics of Science, 1, 95–122. doi: 10.1007/s102020100010.CrossRefGoogle Scholar
  126. Sollie, P. (2007). Ethics, technology development and uncertainty: an outline for any future ethics of technology. Journal of Information, Communication and Ethics in Society, 5(4), 293–306. doi: 10.1108/14779960710846155.CrossRefGoogle Scholar
  127. Spahn, A. (2015). Mediation in design for values. In J. van den Hoven, P. E. Vermaas, & I. van de Poel (Eds.), Handbook of ethics, values, and technological design: Sources, theory, values and application domains (pp. 251–266). Dordrecht: Springer.CrossRefGoogle Scholar
  128. Stahl, B. C. (2007). ETHICS, morality and critique: An essay on Mumford’s socio-technical approach. Journal of the Association for Information Systems, 8(9), 479–490.Google Scholar
  129. Stahl, B. C. (2011). IT for a better future: How to integrate ethics, politics and innovation. Journal of Information, Communication and Ethics in Society, 9(3), 140–156. doi: 10.1108/14779961111167630.CrossRefGoogle Scholar
  130. Stahl, B. C. (2013). Virtual suicide and other ethical issues of emerging information technologies. Futures, 50, 35–43. doi: 10.1016/j.futures.2013.03.004.CrossRefGoogle Scholar
  131. Stahl, B. C., Heersmink, R., Goujon, P., Flick, C., van den Hoven, J., Wakunuma, K., et al. (2010). Identifying the ethics of emerging information and communication technologies. International Journal of Technoethics, 1(4), 20–38. doi: 10.4018/jte.2010100102.CrossRefGoogle Scholar
  132. Stahl, B. C., McBride, N., Wakunuma, K., & Flick, C. (2014). The empathic care robot: A prototype of responsible research and innovation. Technological Forecasting and Social Change, 84, 74–85. doi: 10.1016/j.techfore.2013.08.001.CrossRefGoogle Scholar
  133. Stapleton, L. (2008). Ethical decision making in technology development: A case study of participation in a large-scale information systems development project. AI & SOCIETY, 22(3), 405–429. doi: 10.1007/s00146-007-0150-1.CrossRefGoogle Scholar
  134. Stilgoe, J., Owen, R., & Macnaghten, P. (2013). Developing a framework for responsible innovation. Research Policy, 42(9), 1568–1580. doi: 10.1016/j.respol.2013.05.008.CrossRefGoogle Scholar
  135. Swierstra, T., & Rip, A. (2007). Nano-ethics as NEST-ethics: Patterns of moral argumentation about new and emerging science and technology. NanoEthics, 1(1), 3–20. doi: 10.1007/s11569-007-0005-8.CrossRefGoogle Scholar
  136. Tavani, H. T. (2013). Ethics and technology: Controversies, questions, and strategies for ethical computing. New York: John Wiley & Sons, Inc. doi: 10.1017/CBO9781107415324.004.Google Scholar
  137. Ten Have, H. (1995). Medical technology assessment and ethics. Ambivalent relations. Hastings Center Report, 25(5), 13–19.CrossRefGoogle Scholar
  138. Ten Have, H. (2004). Ethical perspectives on health technology assessment. International Journal of Technology Assessment in Health Care, 1, 71–76.CrossRefGoogle Scholar
  139. Ten Have, H. (2014). Theoretical models and approaches to ethics. In H. ten Have & B. Gordijn (Eds.), Bioethics in a European perspective (pp. 1–5). Dordrecht: Springer. doi: 10.1007/s13398-014-0173-7.2.Google Scholar
  140. Thorstensen, E. (2014). Public involvement and narrative fallacies of nanotechnologies. NanoEthics, 8(3), 227–240. doi: 10.1007/s11569-014-0202-1.CrossRefGoogle Scholar
  141. Vallor, S. (2016). Technology and the virtues. Oxford: Oxford University Press.CrossRefGoogle Scholar
  142. Van de Poel, I. (2008). How should we do nanoethics? A network approach for discerning ethical issues in nanotechnology. NanoEthics, 2, 25–38. doi: 10.1007/s11569-008-0026-y.CrossRefGoogle Scholar
  143. Van de Poel, I. (2009). Values in engineering design. Philosophy of technology and engineering sciences. In: A. Meijers (Ed.), Handbook of the philosophy of science (pp. 973–1006). Amsterdam: Elsevier. doi: 10.1016/B978-0-444-51667-1.50040-9.Google Scholar
  144. Van de Poel, I. (2013). Translating values into design requirements. In D. Michelfelder, N. McCarthy, & D. Goldberg (Eds.), Philosophy and engineering: Reflections on practice, principles and process. Philosophy of Engineering and Technology (Vol. 15). Dordrecht: Springer.Google Scholar
  145. Van den Hoven, J. (2007). ICT and value sensitive design. In P. Goujon, S. Lavelle, P. Duquenoy, K. Kimppa, & V. Laurent (Eds.), IFIP international federation for information processing (Vol. 233, pp. 75–83). Boston: Springer. doi: 10.1002/9781118551424.ch4.Google Scholar
  146. Van den Hoven, J. (2008). Moral methodology and information technology. In K. E. Himma & H. T. Tavani (Eds.), The handbook of information systems research. Hoboken: Wiley. doi: 10.4018/978-1-59140-144-5.Google Scholar
  147. Van den Hoven, J., & Manders-Huits, N. (2009). Value-sensitive design. In J. Kyrre, B. Olsen, & V. F. Hendricks (Eds.), A companion to the philosophy of technology. Malden: Blackwell Publishing. doi: 10.1002/9781444310795.ch1.Google Scholar
  148. Van der Wilt, G. J., Reuzel, R., & Grin, J. (2015). Design for values in healthcare technology. In J. van den Hoven, P. E. Vermaas & I. van de Poel (Eds.), Handbook of ethics, values, and technological design: Sources, theory, values and application domains (pp. 1–871). Heidelberg: Springer.Google Scholar
  149. Van Gorp, A. (2005). Ethical issues in engineering design: Safety and sustainability. Simon Stevin Series in the Philosophy of Technology. PhD Thesis, University of Delft.Google Scholar
  150. Van Gorp, A. (2009). Ethics in and during technological research; An addition to IT ethics and science ethics. In P. Sollie & M. Düwell (Eds.), Evaluating new technologies (pp. 35–49). Heidelberg: Springer.Google Scholar
  151. van Gorp, A., & van der Molen, S. (2011). Parallel, embedded or just part of the team: Ethicists cooperating within a European security research project. Science and Engineering Ethics, 17(1), 31–43. doi: 10.1007/s11948-009-9187-5.CrossRefGoogle Scholar
  152. Van Wynsberghe, A. (2013). Designing robots for care: Care centered value-sensitive design. Science and Engineering Ethics, 19(2), 407–433. doi: 10.1007/s11948-011-9343-6.CrossRefGoogle Scholar
  153. Van Wynsberghe, A., & Robbins, S. (2013). Ethicist as designer: A pragmatic approach to ethics in the lab. Science and Engineering Ethics. doi: 10.1007/s11948-013-9498-4.Google Scholar
  154. Verbeek, P.-P. (2005). What things do; philosophical reflections on technology, agency, and design. Pennsylvania: Pennsylvania University Press.Google Scholar
  155. Verbeek, P.-P. (2006). Materializing morality. Science, Technology and Human Values, 31(3), 361–380. doi: 10.1177/0162243905285847.CrossRefGoogle Scholar
  156. Verbeek, P.-P. (2008). Morality in design: Design ethics and the morality of technological artifacts. In: P. Kroes, P. Vermaas, A. Light & S. Moore (Eds.), Philosophy and design. Dordrecht: Springer.Google Scholar
  157. Verharen, C. C., & Tharakan, J. (2010). Barefoot ethics: Social justice through an appropriate technology checklist. In V. Dzikzeniyo (Ed.), Proceedings of the 4th international conference on appropriate technology (pp. 1–179).Google Scholar
  158. Verharen, C., Tharakan, J., Middendorf, G., Castro-Sitiriche, M., & Kadoda, G. (2013). Introducing survival ethics into engineering education and practice. Science and Engineering Ethics, 19(2), 599–623. doi: 10.1007/s11948-011-9332-9.CrossRefGoogle Scholar
  159. Viseu, A., & Maguire, H. (2012). Integrating and enacting “social and ethical issues” in nanotechnology practices. NanoEthics, 6(3), 195–209. doi: 10.1007/s11569-012-0162-2.CrossRefGoogle Scholar
  160. Wakunuma, K. J., & Stahl, B. C. (2014). Tomorrow’s ethics and today’s response: An investigation into the ways information systems professionals perceive and address emerging ethical issues. Information Systems Frontiers, 16(3), 383–397. doi: 10.1007/s10796-014-9490-9.CrossRefGoogle Scholar
  161. Wenstøp, F., & Koppang, H. (2009). On operations research and value conflicts. Omega, 37(6), 1109–1120. doi: 10.1016/j.omega.2008.10.001.CrossRefGoogle Scholar
  162. Whitbeck, C. (2011). Ethics in engineering practice and research (pp. 351–378). Retrieved from https://books.google.com/books?id=jonM_OFtXAIC&pgis=1.
  163. Whiting, T. L. (2004). Application of the ethical matrix in evaluation of the question of downer cattle transport. In: Proceedings CanWest Veterinary Conference, October 2–5, 2004. Banff: Alberta and British Columbia Veterinary Medical Associations.Google Scholar
  164. Wickson, F., & Forsberg, E. M. (2014). Standardising responsibility? The significance of interstitial spaces. Science and Engineering Ethics, 21(5), 1159–1180. doi: 10.1007/s11948-014-9602-4.CrossRefGoogle Scholar
  165. Wickson, F., Strand, R., & Kjølberg, K. L. (2015). The walkshop approach to science and technology ethics. Science and Engineering Ethics, 21(1), 241–264. doi: 10.1007/s11948-014-9526-z.CrossRefGoogle Scholar
  166. Winkler, E. C., Hiddemann, W., & Marckmann, G. (2011). Ethical assessment of life-prolonging treatment. The lancet Oncology, 12(8), 720–722. doi: 10.1016/S1470-2045(11)70148-6.CrossRefGoogle Scholar
  167. Winner, L. (1980). Do artifacts have politics? Daedalus, 109(1), 121–136. doi: 10.2307/20024652.Google Scholar
  168. Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in software engineering. In 18th international conference on evaluation and assessment in software engineering (EASE 2014) (pp. 1–10).Google Scholar
  169. Wong, E., & Tate, G. (1994). A study of user participation in information systems development. Journal of Information Technology. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.228&rep=rep1&type=pdf.
  170. Wright, D. (2011). A framework for the ethical impact assessment of information technology. Ethics and Information Technology, 13, 199–226. doi: 10.1007/s10676-010-9242-6.CrossRefGoogle Scholar
  171. Wright, D. (2014). Ethical impact assessment. Ethics, Science, Technology, and Engineering, 163(c), 163–167. doi: 10.1016/j.clsr.2011.11.007.Google Scholar
  172. Wright, D., Finn, R., Gellert, R., Gutwirth, S., Schütz, P., Friedewald, M., et al. (2014). Ethical dilemma scenarios and emerging technologies. Technological Forecasting and Social Change, 87, 325–336. doi: 10.1016/j.techfore.2013.12.008.CrossRefGoogle Scholar
  173. Wright, D., & Friedewald, M. (2013). Integrating privacy and ethical impact assessments. Science and Public Policy, 40(6), 740–754. doi: 10.1093/scipol/sct083.CrossRefGoogle Scholar
  174. Zwart, H., Landeweerd, L., & van Rooij, A. (2014). Adapt or perish? Assessing the recent shift in the European research funding arena from “ELSA” to “RRI”. Life Sciences, Society and Policy, 10(1), 1–19. doi: 10.1186/s40504-014-0011-x.CrossRefGoogle Scholar
  175. Zwart, S. D., van de Poel, I., van Mil, H., & Brumsen, M. (2006). A network approach for distinguishing ethical issues in research and development. Science and Engineering Ethics, 12(4), 663–684.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.ADAPT CentreDublin City UniversityGlasnevin, Dublin 9Ireland
  2. 2.Trilateral Research and ConsultingLondonUK
  3. 3.Department of PhilosophyUniversity of TwenteEnschedeThe Netherlands
  4. 4.Institute for Social Research and Technology Assessment (IST), OTH RegensburgRegensburgGermany
  5. 5.ADAPT Centre, Department of Computer ScienceTrinity College Dublin, O’Reilly InstituteDublin 2Ireland
  6. 6.Institute of EthicsDublin City UniversityGlasnevin, Dublin 9Ireland

Personalised recommendations