Advertisement

Science and Engineering Ethics

, Volume 24, Issue 1, pp 29–48 | Cite as

The Strength of Ethical Matrixes as a Tool for Normative Analysis Related to Technological Choices: The Case of Geological Disposal for Radioactive Waste

  • Céline KermischEmail author
  • Christophe Depaus
Original Paper

Abstract

The ethical matrix is a participatory tool designed to structure ethical reflection about the design, the introduction, the development or the use of technologies. Its collective implementation, in the context of participatory decision-making, has shown its potential usefulness. On the contrary, its implementation by a single researcher has not been thoroughly analyzed. The aim of this paper is precisely to assess the strength of ethical matrixes implemented by a single researcher as a tool for conceptual normative analysis related to technological choices. Therefore, the ethical matrix framework is applied to the management of high-level radioactive waste, more specifically to retrievable and non-retrievable geological disposal. The results of this analysis show that the usefulness of ethical matrixes is twofold and that they provide a valuable input for further decision-making. Indeed, by using ethical matrixes, implicit ethically relevant issues were revealed—namely issues of equity associated with health impacts and differences between close and remote future generations regarding ethical impacts. Moreover, the ethical matrix framework was helpful in synthesizing and comparing systematically the ethical impacts of the technologies under scrutiny, and hence in highlighting the potential ethical conflicts.

Keywords

Ethical matrix Future generations Geological disposal Normative analysis Radioactive waste Retrievability 

Notes

Acknowledgements

This work has been supported by the Organisme National des Déchets Radioactifs et desmatières Fissiles enrichies–Nationale Instelling voor Radioactief Afval en verrijkte Splijtstoffen (ONDRAF/NIRAS, Belgium) and the Université libre de Bruxelles (ULB). The authors wish to express special thanks to two anonymous reviewers who provided very thoughtful input for our reflection.

References

  1. Achillas, C., et al. (2013). The use of multi-criteria decision analysis to tackle waste management problems: A literature review. Waste Management and Research, 31(2), 115–129.CrossRefGoogle Scholar
  2. Andrianov, A., et al. (2015). Reexamining the ethics of nuclear technology. Science and Engineering Ethics, 21(4), 999–1018.CrossRefGoogle Scholar
  3. Asveld, L., & Roeser, S. (Eds.). (2009). The ethics of technological risk. London: Earthscan.Google Scholar
  4. Beauchamp, T., & Childress, J. (2001). Principles of biomedical ethics. New York, NY: Oxford University Press.Google Scholar
  5. Bergmans, A., et al. (2015). The participatory turn in radioactive waste management: Deliberation and the social–technical divide. Journal of Risk Research, 18(3), 363–474.CrossRefGoogle Scholar
  6. Briggs, T., et al. (1990). Nuclear waste management: An application of the multicriteria PROMETHEE methods. European Journal of Operational Research, 44(1), 1–10.CrossRefGoogle Scholar
  7. Cotton, M. (2009a). Evaluating the ‘ethical matrix’ as a radioactive waste management deliberative decision-support tool. Environmental Values, 18(5), 153–176.CrossRefGoogle Scholar
  8. Cotton, M. (2009b). Ethical assessment in radioactive waste management: A proposed reflective equilibrium-based deliberative approach. Journal of Risk Research, 12(5), 603–618.CrossRefGoogle Scholar
  9. Cotton, M. (2012). Industry and stakeholder perspectives on the social and ethical aspects of radioactive waste management options. Journal of Transdisciplinary Environmental Studies, 11(1), 8–26.Google Scholar
  10. Cranor, C. (2009). A plea for a rich conception of risks. In L. Asveld & S. Roeser (Eds.), The ethics of technological risk (pp. 27–39). London: Earthscan.Google Scholar
  11. Crisp, R. (2013). Well-being. In Zalt, E. (Ed.) The Stanford encyclopedia of philosophy. http://plato.stanford.edu/entries/well-being/. Accessed 15 November 2015.
  12. de-Shalit, A. (1995). Why posterity matters: Environmental policies and future generations. London: Routledge.Google Scholar
  13. Gamborg, C. (2002). The acceptability of forest management practices: An analysis of ethical accounting and the ethical matrix. Forest Policy and economics, 4, 175–186.CrossRefGoogle Scholar
  14. Grunwald, A. (2009). Technology assessment: Concepts and methods. In A. Meijers (Ed.), Philosophy of technology and engineering sciences (pp. 1103–1146). Amsterdam: Elsevier.CrossRefGoogle Scholar
  15. Guston, D., & Sarewitz, D. (2002). Real-time technology assessment. Technology in Society, 24(1–2), 93–109.CrossRefGoogle Scholar
  16. Hagmann, J. (2012). Fukushima: Probing the analytical and epistemological limits of risk analysis. Journal of Risk Research, 15(7), 801–815.CrossRefGoogle Scholar
  17. Hansson, S. (2004). Philosophical perspectives on risk. Techné, 8(1), 10–35.Google Scholar
  18. IAEA. (1995). The principles of radioactive waste management. Safety series no. 111-F.Google Scholar
  19. IAEA. (2007). IAEA safety glossary. http://www-pub.iaea.org/MTCD/publications/PDF/Pub1290_web.pdf. Accessed 14 August 2015.
  20. IAEA. (2009). Geological disposal of radioactive waste: Technological implications for retrievability. Report NW-T-1.19. http://www-pub.iaea.org/books/IAEABooks/8022/Geological-Disposal-of-Radioactive-Waste-Technological-Implications-for-Retrievability. Accessed 14 August 2015.
  21. ICRP. (2013). Radiological protection in geological disposal of long-lived solid radioactive waste. ICRP publication 122. Annals of the ICRP, 42(3).Google Scholar
  22. Irwin, A., & Wynne, B. (Eds.). (1996). Misunderstanding science? The public reconstruction of science and technology. Cambridge: Cambridge University Press.Google Scholar
  23. Jensen, K., et al. (2011). Facilitating ethical reflection among scientists using the ethical matrix. Science and Engineering Ethics, 17(3), 425–445.CrossRefGoogle Scholar
  24. Kaiser, M., & Forsberg, E. (2001). Assessing fisheries—using an ethical matrix in a participatory process. Journal of Agricultural and Environmental Ethics, 14, 191–200.CrossRefGoogle Scholar
  25. Kaiser, M., et al. (2007). Developing the ethical matrix as a decision support framework: GM fish as a case study. Journal of Agricultural and Environmental Ethics, 20, 53–63.CrossRefGoogle Scholar
  26. Kasperson, R. (1984). Equity issues in radioactive waste management. Cambridge, MA: Oelgeschlager, Gunn and Hain.Google Scholar
  27. Keeney, R., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. New York, NY: Wiley.Google Scholar
  28. Kermisch, C. (2014). Les matrices éthiques au service des technologies à risques. Le cas de la gestion des déchets radioactifs à longue durée de vie. Actes du 20ème Congrès de Maîtrise des risques et de sûreté de fonctionnement, actes électroniques, 2016.Google Scholar
  29. Kermisch, C. (2016). Specifying the concept of future generations for addressing issues related to high-level radioactive waste. Science and Engineering Ethics, 22(6), 1797–1811CrossRefGoogle Scholar
  30. Kermisch, C., Depaus, C., & Labeau, P. E. (2016). A contribution to the analysis of equity associated with high-level radioactive waste management. Progress in Nuclear Energy, 92, 40–47CrossRefGoogle Scholar
  31. Laes, E., & Bombaerts, G. (2006). Constructing acceptable RWM approaches: The politics of participation. WM Symposia, Tucson. http://publications.sckcen.be/dspace/handle/10038/287. Accessed 15 September 2015.
  32. Mepham, B. (2000). A framework for the ethical analysis of novel foods: The ethical matrix. Journal of Agricultural and Environmental Ethics, 12(2), 165–176.CrossRefGoogle Scholar
  33. Mepham, B., Kaiser, M., Thorstensen, E., Tomkins, S., & Millar, K. (2006). Ethical matrix manual. The Hague: LEI. http://estframe.net/ethical_bio_ta_tools_project/content_2/text_2c81d261-b7a8-43e8-8f1e-d724b43e2ba3/1346076649086/et2_manual_em_binnenwerk_45p.pdf. Accessed 15 November 2015.
  34. NEA. (2012). Reversibility of decisions and retrievability of radioactive waste. Report NEA 7085. https://www.oecd-nea.org/rwm/reports/2012/7085-reversibility.pdf. Accessed 14 August 2015.
  35. NEA. (2013). Stakeholder confidence in radioactive waste management. Report NEA 6988. http://www.oecd-nea.org/rwm/docs/2013/6988-fsc-glossary.pdf. Accessed 14 August 2015.
  36. ONDRAF. (2011). Waste plan for the long-term management of conditioned high-level and/or long lived radioactive waste and overview of related issues. Report NIROND 2011-02E. http://www.ondraf-plandechets.be/nieuw/downloads/Waste%20plan%20-%20English.pdf. Accessed 14 August 2015.
  37. ONDRAF (Contracting authority). (2010). Strategic environmental assessment (SEA) pour le plan déchets de l’ONDRAF. Report 5249-506-073. http://www.ondraf-plandechets.be/nieuw/downloads/pdf/5249-506-073-05%20SEA%20Plan%20D%C3%A9chets.pdf. Accessed 14 August 2015.
  38. Oughton, D., et al. (2004). An ethical dimension to sustainable restoration and long-term management of contaminated areas. Journal of Environmental Radioactivity, 74, 171–183.CrossRefGoogle Scholar
  39. Peyton, Y. (1994). Equity in theory and practice. Princeton: Princeton University Press.Google Scholar
  40. Rawls, J. (1971). A theory of justice. Harvard: Harvard University Press.Google Scholar
  41. Rayner, S. (2003). Democracy in the age of assessment: Reflections on the roles of expertise and democracy in public-sector decision making. Science and Public Policy, 30(3), 163–170.CrossRefGoogle Scholar
  42. Roeser, S., et al. (Eds.). (2012). Handbook of risk theory. Dordrecht: Springer.Google Scholar
  43. Roy, B., & Vincke, P. (1981). Multicriteria analysis: Survey and new directions. European Journal of Operational Research, 8(3), 207–218.CrossRefGoogle Scholar
  44. Schot, J., & Rip, A. (1997). The past and the future of constructive technology assessment. Technological Forecasting and Social Change, 54(2–3), 251–268.CrossRefGoogle Scholar
  45. Schroeder, D., & Palmer, C. (2003). Technology assessment and the ‘ethical matrix’. Poiesis and Praxis, 1(4), 295–307.CrossRefGoogle Scholar
  46. Shrader-Frechette, K. (1993). Burying uncertainty: Risk and the case against geological disposal of waste. Berkeley: University of California Press.Google Scholar
  47. Shrader-Frechette, K. (1994). Equity and nuclear waste disposal. Journal of Agricultural and Environmental Ethics, 7(2), 133–156.CrossRefGoogle Scholar
  48. Shrader-Frechette, K. (2000). Duties to future generations, proxy consent, intra-and intergenerational equity: The case of nuclear waste. Risk Analysis, 20(6), 771–778.CrossRefGoogle Scholar
  49. Shrader-Frechette, K. (2002). Trading jobs for health: Ionizing radiation, occupational ethics, and the welfare argument. Science and Engineering Ethics, 8(2), 139–154.CrossRefGoogle Scholar
  50. Shrader-Frechette, K. (2005). Mortgaging the future: Dumping ethics with nuclear waste. Science and Engineering Ethics, 11(4), 518–520.CrossRefGoogle Scholar
  51. Shrader-Frechette, K. (2011). Climate change, nuclear economics, and conflicts of interest. Science and Engineering Ethics, 17(1), 75–107.CrossRefGoogle Scholar
  52. Shrader-Frechette, K. (2013). Environmental injustice inherent in radiation dose standards. In Oughton, D., & Hansson, S. (Eds.), Social and ethical aspects of radiation risk management 19, Newnes.Google Scholar
  53. Taebi, B. (2011). The morally desirable option for nuclear power production. Philosophy and Technology, 24(2), 169–192.CrossRefGoogle Scholar
  54. Taebi, B. (2012). Intergenerational risks of nuclear energy. In S. Roeser et al. (Eds.), Handbook of risk theory (pp. 296–318). Dordrecht: Springer.Google Scholar
  55. Taebi, B., & Kadak, C. (2010). Intergenerational considerations affecting the future of nuclear power: Equity as a framework for assessing fuel cycles. Risk Analysis, 30(9), 1341–1362.CrossRefGoogle Scholar
  56. Taebi, B., & Kloosterman, J. (2015). Design for values in nuclear technology. In J. van den Hoven et al. (Eds.), Handbook of ethics, values, and technological design (pp. 805–829). Dordrecht: Springer.CrossRefGoogle Scholar
  57. Turcanu, C., & Perko, T. (2013). Integration of social aspects into nuclear research: The SCK· CEN public opinion Barometer. https://inis.iaea.org/search/search.aspx?orig_q=RN:44066307. Accessed 15 September 2015.
  58. van de Poel, I., & Royakkers, L. (2011). Ethics, technology, and engineering: An introduction. London: Wiley-Blackwell.Google Scholar
  59. van den Hoven, J., et al. (Eds.). (2015). Handbook of ethics, values, and technological design. Dordrecht: Springer.Google Scholar
  60. Walker, G. (2009). Beyond distribution and proximity: Exploring the multiple spatialities of environmental justice. Antipode, 41(4), 614–636.CrossRefGoogle Scholar
  61. Werner, C. (2009). Patriotism, profits, and waste. In K. Browne & B. Milgram (Eds.), Economics and morality (pp. 143–166). Lanham: Altamira Press.Google Scholar
  62. Wilding, E. (2012). Framing ethical acceptability: A problem with nuclear waste in Canada. Science and Engineering Ethics, 18(2), 301–313.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Centre de Recherches Interdisciplinaires en Bioéthique, Service de Métrologie NucléaireUniversité Libre de Bruxelles (ULB)BrusselsBelgium
  2. 2.Organisme National des Déchets Radioactifs et des Matières Fissiles Enrichies (ONDRAF/NIRAS)BrusselsBelgium

Personalised recommendations