Advertisement

Science and Engineering Ethics

, Volume 24, Issue 1, pp 299–305 | Cite as

Economic, Environmental and Moral Acceptance of Renewable Energy: A Case Study—The Agricultural Biogas Plant at Pěčín

  • Marek VochozkaEmail author
  • Anna Maroušková
  • Petr Šuleř
Opinion

Abstract

The production of renewable energy in agricultural biogas plants is being widely criticized because—among other things—most of the feedstock comes from purpose-grown crops like maize. These activities (generously subsidized in the Czech Republic) generate competitive pressure to other crops that are used for feeding or food production, worsening their affordability. Unique pretreatment technology that allows substitution of the purpose-grown crops by farming residues (such as husk or straw) was built 6 years ago on a commercial basis in Pěčín (Czech Republic) under modest funding and without publicity. The design of the concept; financial assessment and moral viewpoint were analyzed based on practical operating data. It showed that the apparatus improves economic, environmental and moral acceptance as well. However, according to the government’s view, public funding for this type of processing was shortened, “because waste materials represent a lower cost”. The impact of such governance was analyzed as well.

Keywords

Environmental assessment Moral consideration Financial analysis Process management Renewable energy 

References

  1. Ajanovic, A. (2011). Biofuels versus food production: Does biofuels production increase food prices? Energy, 36(4), 2070–2076.CrossRefGoogle Scholar
  2. Bjerre, A. B., Olesen, A. B., Fernqvist, T., Plöger, A., & Schmidt, A. S. (1996). Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology and Bioengineering, 49(5), 568–577.CrossRefGoogle Scholar
  3. Chen, H. Z., & Liu, Z. H. (2015). Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnology Journal, 10(6), 866–885.CrossRefGoogle Scholar
  4. Cotana, F., Cavalaglio, G., Gelosia, M., Nicolini, A., Coccia, V., & Petrozzi, A. (2014). Production of bioethanol in a second generation prototype from pine wood chips. Energy Procedia, 45, 42–51.CrossRefGoogle Scholar
  5. Dale, B. E., Anderson, J. E., Brown, R. C., Csonka, S., Dale, V. H., Herwick, G., et al. (2014). Take a closer look: Biofuels can support environmental, economic and social goals. Environmental Science and Technology, 48(13), 7200–7203.CrossRefGoogle Scholar
  6. Hašková, S. (2016). Holistic assessment and ethical disputation on a new trend in solid biofuels. Science and Engineering Ethics. doi: 10.1007/s11948-016-9790-1.Google Scholar
  7. Jönsson, L. J., Alriksson, B., & Nilvebrant, N. O. (2013). Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnology for Biofuels. doi: 10.1186/1754-6834-6-16.Google Scholar
  8. Kim, K. H., & Hong, J. (2001). Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresource Technology, 77(2), 139–144.CrossRefGoogle Scholar
  9. Kolář, L., Kužel, S., Peterka, J., Štindl, P., & Plát, V. (2008). Agrochemical value of organic matter of fermenter wastes in biogas production. Plant, Soil and Environment, 54(8), 321–328.Google Scholar
  10. Kolk, A. (2016). The social responsibility of international business: From ethics and the environment to CSR and sustainable development. Journal of World Business, 51(1), 23–34.CrossRefGoogle Scholar
  11. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48(8), 3713–3729.CrossRefGoogle Scholar
  12. Mardoyan, A., & Braun, P. (2015). Analysis of Czech subsidies for solid biofuels. International Journal of Green Energy, 12(4), 405–408.CrossRefGoogle Scholar
  13. Maroušek, J. (2012). Finding the optimal parameters for the steam explosion process of hay. Revista Técnica de la Facultad de Ingeniería, 35(2), 170–178.Google Scholar
  14. Maroušek, J. (2013). Study on agriculture decision-makers behavior on sustainable energy utilization. Journal of Agricultural and Environmental Ethics, 26(3), 679–689.CrossRefGoogle Scholar
  15. Maroušek, J. (2014). Significant breakthrough in biochar cost reduction. Clean Technologies and Environmental Policy, 16(8), 1821–1825.CrossRefGoogle Scholar
  16. Maroušek, J., Hašková, S., Zeman, R., Váchal, J., & Vaníčková, R. (2014). Nutrient management in processing of steam—exploded lignocellulose phytomass. Chemical Engineering and Technology, 37(11), 1945–1948.CrossRefGoogle Scholar
  17. Maroušek, J., Hašková, S., Zeman, R., Váchal, J., & Vaníčková, R. (2015). Assessing the implications of EU subsidy policy on renewable energy in Czech Republic. Clean Technologies and Environmental Policy, 17(2), 549–554.CrossRefGoogle Scholar
  18. Maroušek, J., Itoh, S., Higa, O., Kondo, Y., Ueno, M., Suwa, R., et al. (2013). Enzymatic hydrolysis enhanced by pressure shockwaves opening new possibilities in Jatropha curcas L. processing. Journal of Chemical Technology and Biotechnology, 88(9), 1650–1653.CrossRefGoogle Scholar
  19. Maroušek, J., Kawamitsu, Y., Ueno, M., Kondo, Y., & Kolář, L. (2012). Methods for improving methane yield from rye straw. Applied Engineering in Agriculture, 28(5), 747–755.CrossRefGoogle Scholar
  20. Maroušek, J., Vochozka, M., Plachý, J., & Žák, J. (2016). Glory and misery of biochar. Clean Technologies and Environmental Policy. doi: 10.1007/s10098-016-1284-y.Google Scholar
  21. McIntosh, S., Zhang, Z., Palmer, J., Wong, H. H., Doherty, W. O., & Vancov, T. (2016). Pilot-scale cellulosic ethanol production using eucalyptus biomass pre-treated by dilute acid and steam explosion. Biofuels, Bioproducts and Biorefining, 10(4), 346–358.CrossRefGoogle Scholar
  22. Meissner, R. (2015). The relevance of social theory in the practice of environmental management. Science and Engineering Ethics, 22(5), 1345–1360.CrossRefGoogle Scholar
  23. Misra, N., Panda, P. K., Parida, B. K., & Mishra, B. K. (2016). Way forward to achieve sustainable and cost-effective biofuel production from microalgae: A review. International Journal of Environmental Science and Technology, 13(11), 2735–2756.CrossRefGoogle Scholar
  24. Painuly, J. P. (2001). Barriers to renewable energy penetration: A framework for analysis. Renewable Energy, 24(1), 73–89.CrossRefGoogle Scholar
  25. Pimentel, D. (2003). Ethanol fuels: Energy balance, economics, and environmental impacts are negative. Natural Resources Research, 12(2), 127–134.CrossRefGoogle Scholar
  26. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource technology, 83(1), 1–11.CrossRefGoogle Scholar
  27. Van der Horst, D. (2007). NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies. Energy policy, 35(5), 2705–2714.CrossRefGoogle Scholar
  28. Wijaya, Y. P., Putra, R. D. D., Widyaya, V. T., Ha, J. M., Suh, D. J., & Kim, C. S. (2014). Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass. Bioresource Technology, 164, 221–231.CrossRefGoogle Scholar
  29. Wüstenhagen, R., Wolsink, M., & Bürer, M. J. (2007). Social acceptance of renewable energy innovation: An introduction to the concept. Energy policy, 35(5), 2683–2691.CrossRefGoogle Scholar
  30. Yang, Z., Kang, H., Guo, Y., Zhuang, G., Bai, Z., Zhang, H., et al. (2013). Dilute-acid conversion of cotton straw to sugars and levulinic acid via 2-stage hydrolysis. Industrial Crops and Products, 46, 205–209.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Marek Vochozka
    • 1
    Email author
  • Anna Maroušková
    • 1
  • Petr Šuleř
    • 2
  1. 1.School of Expertness and ValuationThe Institute of Technology and Businesses in České BudějoviceCeske BudejoviceCzech Republic
  2. 2.Faculty of Management and InformaticsUniversity of ŽilinaZilinaSlovak Republic

Personalised recommendations