Science and Engineering Ethics

, Volume 23, Issue 2, pp 351–363 | Cite as

CRISPR and the Rebirth of Synthetic Biology

  • Raheleh Heidari
  • David Martin Shaw
  • Bernice Simone Elger
Original Paper

Abstract

Emergence of novel genome engineering technologies such as clustered regularly interspaced short palindromic repeat (CRISPR) has refocused attention on unresolved ethical complications of synthetic biology. Biosecurity concerns, deontological issues and human right aspects of genome editing have been the subject of in-depth debate; however, a lack of transparent regulatory guidelines, outdated governance codes, inefficient time-consuming clinical trial pathways and frequent misunderstanding of the scientific potential of cutting-edge technologies have created substantial obstacles to translational research in this area. While a precautionary principle should be applied at all stages of genome engineering research, the stigma of germline editing, synthesis of new life forms and unrealistic presentation of current technologies should not arrest the transition of new therapeutic, diagnostic or preventive tools from research to clinic. We provide a brief review on the present regulation of CRISPR and discuss the translational aspect of genome engineering research and patient autonomy with respect to the “right to try” potential novel non-germline gene therapies.

Keywords

CRISPR Synthetic biology Genome engineering Gene therapy Bioethics Society 

Notes

Acknowledgments

This research project was funded by the University of Basel and the ‘Swiss National Science Foundation’ under project Grant No. PDFMP3_137194/1.

References

  1. Baltimore, D., Berg, P., Botchan, M., Carroll, D., Charo, R. A., Church, G., et al. (2015). Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science, 348(6230), 36–38. doi: 10.1126/science.aab1028.CrossRefGoogle Scholar
  2. Collins, F. S. (2015). The NIH director. Statement on NIH funding of research using gene-editing technologies in human embryos. http://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-nih-funding-research-using-gene-editing-technologies-human-embryos. Accessed 07 Dec 2015.
  3. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.CrossRefGoogle Scholar
  4. Dana, G. V., Kuiken, T., Rejeski, D., & Snow, A. A. (2012). Synthetic biology: Four steps to avoid a synthetic-biology disaster. Nature. doi: 10.1038/483029a.Google Scholar
  5. Department of health and human services NIH. (2013). Revisions of the NIH guidelines for research involving recombinant or synthetic nucleic acid molecules. http://osp.od.nih.gov/sites/default/files/NIH_Guidelines_0.pdf. Accessed 07 Dec 2015.
  6. Ding, Q., Strong, A., Patel, K. M., Ng, S. L., Gosis, B. S., Regan, S. N., et al. (2014). Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circulation Research, 115(5), 488–492. doi: 10.1161/CIRCRESAHA.115.304351.CrossRefGoogle Scholar
  7. Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. doi: 10.1126/science.1258096.CrossRefGoogle Scholar
  8. Dow, L. E. (2015). Modeling disease in vivo with CRISPR/Cas9. Trends in Molecular Medicine, 21(10), 609–621. doi: 10.1016/j.molmed.2015.07.006.CrossRefGoogle Scholar
  9. Emanuel, E. J., & Emanuel, L. L. (1992). Four models of the physician-patient relationship. JAMA, 267(16), 2221–2226.CrossRefGoogle Scholar
  10. European Commission. (2014). Opinion on synthetic biology I definition. http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_044.pdf. Accessed 07 Dec 2015.
  11. European Commission. (2015). Synthetic biology II—Risk assessment methodologies and safety aspects, opinion. http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_048.pdf. Accessed 07 Dec 2015.
  12. European Council. (1997). Convention for the protection of human rights and dignity of the human being with regard to the application of biology and medicine: Convention on human rights and biomedicine. https://rm.coe.int/CoERMPublicCommonSearchServices/DisplayDCTMContent?documentId=090000168007cf98. Accessed 07 Dec 2015.
  13. European Council. (1998). Directive 98/44/EC of the European Parliament and of the Council of 6 July 1998 on the legal protection of biotechnological inventions http://eur-lex.europa.eu/legal-content/EN/NOT/?uri=CELEX:31998L0044. Accessed 07 Dec 2015.
  14. European Council. (2009a). Directive 2001/20/ec of the european parliament and of the council of 4 April 2001 on the approximation of the laws, regulations and administrative provisions of the member states relating to the implementation of good clinical practice in the conduct of clinical trials on medicinal products for human use. Official Journal of the European Commuinities, OJ L, 121, 34–44.Google Scholar
  15. European Council. (2009b). Commission directive 2009/120/EC of 14 September 2009 amending directive 2001/83/EC of the European Parliament and of the council on the community code relating to medicinal products for human use as regards advanced therapy medicinal products. Official Journal of the European Commuinities, L242, 3–12.Google Scholar
  16. European Council. (2009c). Contained use of genetically modified micro-organisms (GMMs) http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=URISERV:sa0015. Accessed 07 Dec 2015.
  17. European Medicines Agency. (2006). Concept paper on the development of a CHMP guideline on the non-clinical requirements to support early phase I clinical trials with pharmaceutical compounds. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/10/WC500003979.pdf. Accessed 07 Dec 2015.
  18. Folcher, M., Oesterle, S., Zwicky, K., Thekkottil, T., Heymoz, J., Hohmann, M., et al. (2014). Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nature Communications, 5, 5392. doi: 10.1038/ncomms6392.CrossRefGoogle Scholar
  19. Food and drug administration center for biologics evaluation and research. (1998). Guidance for industry: Guidance for human somatic cell therapy and gene therapy. http://www.fda.gov/biologicsbloodvaccines/guidancecomplianceregulatoryinformation/guidances/cellularandgenetherapy/ucm072987.htm#i. Accessed 07 Dec 2015.
  20. Greely, H. (2015). Law and biosciences blog of science, CRISPR-Cas9, and Asilomar. https://law.stanford.edu/2015/04/04/of-science-crispr-cas9-and-asilomar/. Accessed 07 Dec 2015.
  21. Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278. doi: 10.1016/j.cell.2014.05.010.CrossRefGoogle Scholar
  22. International bioethics committee of UNESCO (2015). (2015). Report of the IBC on updating its reflection on the human genome and human rights. http://unesdoc.unesco.org/images/0023/002332/233258E.pdf. Accessed 07 Dec 2015.
  23. Ledford, H. (2015). CRISPR, the disruptor. Nature, 522(7554), 20–24. doi: 10.1038/522020a.CrossRefGoogle Scholar
  24. Liang, P., Xu, Y., Zhang, X., Ding, C., Huang, R., Zhang, Z., et al. (2015). CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein and Cell, 6(5), 363–372. doi: 10.1007/s13238-015-0153-5.CrossRefGoogle Scholar
  25. LoRusso, P. M. (2009). Phase 0 clinical trials: an answer to drug development stagnation? Journal of Clinical Oncology, 27(16), 2586–2588. doi: 10.1200/JCO.2008.21.5798.CrossRefGoogle Scholar
  26. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., et al. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823–826. doi: 10.1126/science.1232033.CrossRefGoogle Scholar
  27. Meissner, T. B., Mandal, P. K., Ferreira, L. M., Rossi, D. J., & Cowan, C. A. (2014). Genome editing for human gene therapy. Methods in Enzymology, 546, 273–295. doi: 10.1016/B978-0-12-801185-0.00013-1.CrossRefGoogle Scholar
  28. Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., et al. (2014). Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 156(4), 836–843. doi: 10.1016/j.cell.2014.01.027.CrossRefGoogle Scholar
  29. Pardee, K., Green, A. A., Ferrante, T., Cameron, D. E., DaleyKeyser, A., Yin, P., et al. (2014). Paper-based synthetic gene networks. Cell, 159(4), 940–954. doi: 10.1016/j.cell.2014.10.004.CrossRefGoogle Scholar
  30. Reardon, S. (2015). Leukaemia success heralds wave of gene-editing therapies. Accessed 06 Nov 2015.Google Scholar
  31. Ruder, W. C., James, T. L., & Collins, J. J. (2011). Synthetic biology moving into the clinic. Science, 333(6047), 1248–1252. doi: 10.1126/science.1206843 CrossRefGoogle Scholar
  32. Sarewitz, D. (2015). CRISPR: Science can’t solve it. Nature Comments, 522(7557), 413–414.CrossRefGoogle Scholar
  33. Shaw, D., & Elger, B. (2014). Putting patients on research ethics committees. Journal of the Royal Society of Medicine, 107(8), 304–307.CrossRefGoogle Scholar
  34. Shino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169, 5429–5433.CrossRefGoogle Scholar
  35. UNESCO. (1997). Universal declaration on the human genome and human rights. http://portal.unesco.org/en/ev.php-URL_ID=13177&URL_DO=DO_TOPIC&URL_SECTION=201.html. Accessed 07 Dec 2015.
  36. U.S Food and Drug Administration. (2006). Guidance for industry, investigators, and reviewers exploratory in studies. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm078933.pdf. Accessed 07 Dec 2015.
  37. Ye, H., & Fussenegger, M. (2014). Synthetic therapeutic gene circuits in mammalian cells. FEBS Letters, 588(15), 2537–2544. doi: 10.1016/j.febslet.2014.05.003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Raheleh Heidari
    • 1
  • David Martin Shaw
    • 1
  • Bernice Simone Elger
    • 1
  1. 1.Institute for Biomedical EthicsUniversity of BaselBaselSwitzerland

Personalised recommendations