Science and Engineering Ethics

, Volume 22, Issue 5, pp 1299–1317 | Cite as

Informed Consent in Implantable BCI Research: Identifying Risks and Exploring Meaning

Original Paper

Abstract

Implantable brain–computer interface (BCI) technology is an expanding area of engineering research now moving into clinical application. Ensuring meaningful informed consent in implantable BCI research is an ethical imperative. The emerging and rapidly evolving nature of implantable BCI research makes identification of risks, a critical component of informed consent, a challenge. In this paper, 6 core risk domains relevant to implantable BCI research are identified—short and long term safety, cognitive and communicative impairment, inappropriate expectations, involuntariness, affective impairment, and privacy and security. Work in deep brain stimulation provides a useful starting point for understanding this core set of risks in implantable BCI. Three further risk domains—risks pertaining to identity, agency, and stigma—are identified. These risks are not typically part of formalized consent processes. It is important as informed consent practices are further developed for implantable BCI research that attention be paid not just to disclosing core research risks but exploring the meaning of BCI research with potential participants.

Keywords

Informed consent Brain–computer interface (BCI) Deep brain stimulation (DBS) Neuroethics Safety Research ethics 

Notes

Acknowledgments

The author is grateful to Sara Goering and Laura Specker Sullivan for helpful comments. This work was supported by Award Number EEC-1028725 from the National Science Foundation. The content is solely the responsibility of the author and does not necessarily represent the official views of the National Science Foundation.

References

  1. Aarsland, D., Zaccai, J., & Brayne, C. (2005). A systematic review of prevalence studies of dementia in Parkinson’s disease. Movement Disorders, 20, 1255–1263.CrossRefGoogle Scholar
  2. Abbott, A. (2012). Mind-controlled robot arms show promise. http://www.nature.com/news/mind-controlled-robot-arms-show-promise-1.10652. Accessed 29 June 2015
  3. Abelson, J. L., Curtis, G. C., Sagher, O., Albucher, R. C., Harrigan, M., Taylor, S. F., et al. (2005). Deep brain stimulation for refractory obsessive-compulsive disorder. Biological Psychiatry, 57(5), 510–516.CrossRefGoogle Scholar
  4. Appelbaum, P., & Grisso, T. (2001). MacCAT-CR: MacArthur competence assessment tool for clinical research. Sarasota, FL: Professional Resource Press.Google Scholar
  5. Appelbaum, P. S., Roth, L. H., Lidz, C. W., Benson, P., & Winslade, W. (1987). False hopes and best data: Consent to research and the therapeutic misconception. Hastings Center Report, 17(2), 20–24.CrossRefGoogle Scholar
  6. Baylis, F. (2013). “I Am Who I Am”: On the perceived threats to personal identity from deep brain stimulation. Neuroethics, 6(3), 513–526.CrossRefGoogle Scholar
  7. Beauchamp, T. L., & Childress, J. F. (2012). Principles of biomedical ethics (7th ed.). New York: Oxford University Press.Google Scholar
  8. Bell, E., Mathieu, G., & Racine, E. (2009). Preparing the ethical future of deep brain stimulation. Surgical Neurology, 72(6), 577–586.CrossRefGoogle Scholar
  9. Bell, E., Maxwell, B., McAndrews, M. P., Sadikot, A., & Racine, E. (2010). Hope and patients’ expectations in deep brain stimulation: Healthcare providers’ perspectives and approaches. Journal of Clinical Ethics, 21, 112–124.Google Scholar
  10. Bell, E., Racine, E., Chiasson, P., Dufourcq-Brana, M., Dunn, L. B., Fins, J. J., et al. (2014). Beyond consent in research. Cambridge Quarterly of Healthcare Ethics, 23(03), 361–368.CrossRefGoogle Scholar
  11. Bergey, G. K., Morrell, M. J., Mizrahi, E. M., Goldman, A., King-Stephens, D., Nair, D., et al. (2015). Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology, 84(8), 810–817.CrossRefGoogle Scholar
  12. Carmichael, C., & Carmichael, P. (2014). BNCI systems as a potential assistive technology: Ethical issues and participatory research in the BrainAble project. Disability and Rehabilitation: Assistive Technology, 9(1), 41–47.CrossRefGoogle Scholar
  13. Cherney, J. L. (1999). Deaf culture and the cochlear implant debate: Cyborg politics and the identity of people with disabilities. Argumentation and Advocacy, 36(1), 22–34.Google Scholar
  14. Chio, A., Gauthier, A., Calvo, A., Ghiglione, P., & Mutani, R. (2005). Caregiver burden and patients’ perception of being a burden in ALS. Neurology, 64(10), 1780–1782.CrossRefGoogle Scholar
  15. Clausen, J. (2008). Moving minds: ethical aspects of neural motor prostheses. Biotechnology Journal, 3(12), 1493–1501.CrossRefGoogle Scholar
  16. Clausen, J. (2011). Conceptual and ethical issues with brain–hardware interfaces. Current Opinion in Psychiatry, 24(6), 495–501.Google Scholar
  17. Consonni, M., Iannaccone, S., Cerami, C., et al. (2013). The cognitive and behavioural profile of amyotrophic lateral sclerosis: Application of the consensus criteria. Behavioural Neurology, 27(2), 143–153.CrossRefGoogle Scholar
  18. Costello, A., Al Khamees, H., Moriarty, J., Hulse, N., Malik, I., Selway, R., et al. (2011). Non-amnestic mild cognitive impairment is a prominent aspect in Parkinson’s disease patients being considered for deep brain stimulation. Basal Ganglia, 1(4), 213–220.CrossRefGoogle Scholar
  19. Denning, T., Matsuoka, Y., & Kohno, T. (2009). Neurosecurity: Security and privacy for neural devices. Neurosurgical Focus, 27(1), E7.CrossRefGoogle Scholar
  20. Drazin, D., Spitler, K., Cekic, M., et al. (2013). Incidental finding of tumor while investigating subarachnoid hemorrhage: Ethical considerations and practical strategies. Science and Engineering Ethics, 19(3), 1107–1120.CrossRefGoogle Scholar
  21. Farah, M. J. (2012). Neuroethics: The ethical, legal, and societal impact of neuroscience. Annual Review of Psychology, 63, 571–591.CrossRefGoogle Scholar
  22. Finder, S. G. (2012). Potential subjects’ responses to an ethics questionnaire in a phase I study of deep brain stimulation in early Parkinson’s disease. Journal of Clinical Ethics, 23(3), 207–216.Google Scholar
  23. Fisher, C. E., Dunn, L. B., Christopher, P. P., Holtzheimer, P. E., Leykin, Y., Mayberg, H. S., et al. (2012). The ethics of research on deep brain stimulation for depression: Decisional capacity and therapeutic misconception. Annals of the New York Academy of Sciences, 1265, 69–79.CrossRefGoogle Scholar
  24. Foley, P. (2015). Deep brain stimulation for Parkinson’s disease: Historical and neuroethical aspects. In J. Clausen & N. Levy (Eds.), Handbook of neuroethics (pp. 561–587). Dordrecht: Springer.Google Scholar
  25. Gilbert, F. (2012). The burden of normality: From ‘chronically ill’ to ‘symptom free’. New ethical challenges for deep brain stimulation postoperative treatment. Journal of Medical Ethics, 38(7), 408–412.CrossRefGoogle Scholar
  26. Glannon, W. (2009). Stimulating brains, altering minds. Journal of Medical Ethics, 35(5), 289–292.CrossRefGoogle Scholar
  27. Glannon, W. (2010). Consent to deep brain stimulation for neurological and psychiatric disorders. Journal of Clinical Ethics, 21, 104–111.Google Scholar
  28. Glannon, W. (2014). Ethical issues with brain–computer interfaces. Frontiers in Systems Neuroscience, 8, 136. doi: 10.3389/fnsys.2014.00136.Google Scholar
  29. Goering, S. (2014). Is it still me? DBS, agency, and the extended, relational me. AJOB Neuroscience, 5(4), 50–51.CrossRefGoogle Scholar
  30. Goethals, I., Jacobs, F., Van der Linden, C., Caemaert, J., & Audenaert, K. (2008). Brain activation associated with deep brain stimulation causing dissociation in a patient with Tourette’s syndrome. Journal of Trauma & Dissociation, 9(4), 543–549.CrossRefGoogle Scholar
  31. Halperin, D., Heydt-Benjamin, T. S., Ransford, B., Clark, S. S., Defend, B., Morgan, W., et al. (2008). Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses. In IEEE (Ed.), IEEE symposium on security and privacy (pp. 129–142). Los Alamitos: IEEE Computer Society Conference Publishing Services.Google Scholar
  32. Haselager, P. (2013). Did I do that? Brain–computer interfacing and the sense of agency. Minds and Machines, 23(3), 405–418.CrossRefGoogle Scholar
  33. Haselager, P., Vlek, R., Hill, J., & Nijboer, F. (2009). A note on ethical aspects of BCI. Neural Networks, 22(9), 1352–1357.CrossRefGoogle Scholar
  34. Herron, J., & Chizeck, H. J. (2014). Prototype closed-loop deep brain stimulation systems inspired by Norbert Wiener. Proceedings of the 2014 IEEE Conference on Norbert Wiener in the 21st Century (pp. 1–6).Google Scholar
  35. Hochberg, L. R., & Anderson, K. D. (2012). BCI users and their needs. In J. Wolpaw & W. W. Elizabeth (Eds.), Brain–computer interfaces: Principles and practice (pp. 317–323). New York: Oxford University Press.Google Scholar
  36. Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel, J., et al. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398), 372–375.CrossRefGoogle Scholar
  37. Hochberg, L., & Cochrane, T. (2013). Implanted neural interfaces: Ethics in treatment and research. In A. Chatterjee & M. Farah (Eds.), Neuroethics in practice (pp. 235–250). New York, NY: Oxford University Press. doi: 10.1093/acprof:oso/9780195389784.003.0017.CrossRefGoogle Scholar
  38. Johnson-Green, D. (2010). Informed consent issues in traumatic brain injury research: Current status of capacity assessment and recommendations for safeguards. J Head Trauma Rehabil, 25(2), 145–150. doi: 10.1097/HTR.0b013e3181d8287d.CrossRefGoogle Scholar
  39. Klein, E. (2015). Models of the patient–machine–clinician relationship in closed-loop machine neuromodulation. In S. van Rysewyk & M. Pontier (Eds.), Machine medical ethics (pp. 273–290). Dordrecht: Springer International Publishing.Google Scholar
  40. Kolata, G. (2009). Of fact, fiction, and Cheney’s defibrillator. http://www.nytimes.com/2013/10/29/science/of-fact-fiction-and-defibrillators.html?_r=0. Accessed 22 July 2015
  41. Kübler, A., & Birbaumer, N. (2008). Brain–computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clinical Neurophysiology, 119(11), 2658–2666.CrossRefGoogle Scholar
  42. Kubler, A., & Muller, K.-R. (2007). An introduction to brain–computer interfacing. In G. Dornhege, J. Millan, T. Hinterberger, D. McFarland, & K.-R. Muller (Eds.), Towards brain–computer interfacing (pp. 1–25). Cambridge, MA: MIT Press.Google Scholar
  43. Lang, A. E., Houeto, J., Krack, P., Kubu, C., Lyons, K. E., Moro, E., et al. (2006). Deep brain stimulation: Preoperative issues. Movement Disorders, 21(S14), S171–S196.CrossRefGoogle Scholar
  44. Larson, P. S. (2014). Deep brain stimulation for movement disorders. Neurotherapeutics, 11(3), 465–474.CrossRefGoogle Scholar
  45. Leentjens, A. F. G., Visser-Vandewalle, V., Temel, Y., & Verhey, F. R. J. (2004). Manipuleerbare wilsbekwaamheid: een ethisch probleem bij elektrostimulatie van de nucleaus subthalamicus voor ernstige ziekte van Parkinson. Nederlands Tijdschrift voor Geneeskunde, 148, 1394–1397.Google Scholar
  46. Lhommeé, E., Klinger, H., Thobois, S., Schmitt, E., Ardouin, C., Bichon, A., et al. (2012). Subthalamic stimulation in Parkinson’s disease: Restoring the balance of motivated behaviours. Brain, 135, 1463–1477.CrossRefGoogle Scholar
  47. Liberati, G., da Rocha, J. L., Van Dalboni, L., der Heiden, A., Raffone, N. B., Olivetti, B. M., et al. (2011). Toward a brain–computer interface for Alzheimer’s disease patients by combining classical conditioning and brain state classification. Journal of Alzheimer’s Disease, 31, S211–S220.Google Scholar
  48. Mak, J. N., & Wolpaw, J. R. (2009). Clinical applications of brain–computer interfaces: Current state and future prospects. Biomedical Engineering IEEE Reviews, 2, 187–199.CrossRefGoogle Scholar
  49. Mandat, T. S., Hurwitz, T., & Honey, C. R. (2006). Hypomania as an adverse effect of subthalamic nucleus stimulation: Report of two cases. Acta Neurochirurgica, 148(8), 895–898.CrossRefGoogle Scholar
  50. McCullagh, P., Lightbody, G., Zygierewicz, J., & Kernohan, W. G. (2014). Ethical challenges associated with the development and deployment of brain computer interface technology. Neuroethics, 7(2), 109–122.CrossRefGoogle Scholar
  51. McGie, S. C., Nagai, M. K., & Artinian-Shaheen, T. (2013). Clinical ethical concerns in the implantation of brain-machine interfaces: Part II: Specific clinical and technical issues affecting ethical soundness. Pulse IEEE, 4(2), 32–37. [confirm the issue].CrossRefGoogle Scholar
  52. Morishita, T., Okun, M. S., Jones, J. D., Foote, K. D., & Bowers, D. (2014). Cognitive declines after deep brain stimulation are likely to be attributable to more than caudate penetration and lead location. Brain, 137(5), e274.CrossRefGoogle Scholar
  53. Patuzzo, S., & Manganotti, P. (2014). Deep brain stimulation in persistent vegetative states: Ethical issues governing decision making. Behavioural Neurology, 2014, 641213. Epub 2014 Mar 16.CrossRefGoogle Scholar
  54. Post, M. W. M., Bloemen, J., & De Witte, L. P. (2005). Burden of support for partners of persons with spinal cord injuries. Spinal Cord, 43(5), 311–319.CrossRefGoogle Scholar
  55. Presidential Commission for the Study of Bioethical Issues. (2015). Gray matters: Topics at the intersection of neuroroscience, ethics, and society, Vol. 2. Washington, DC. Google Scholar
  56. Rao, R. P. N. (2013). Brain–computer interfacing: An introduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  57. Richmond, F. J. R., & Loeb, G. E. (2012). Dissemination: Getting BCIs to the people who need them. In J. Wolpaw & E. W. Wolpaw (Eds.), Brain–computer interfaces: Principles and practice (pp. 337–350). New York: Oxford University Press.Google Scholar
  58. Ringholz, G. M., Appel, S. H., Bradshaw, M., et al. (2005). Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology, 65, 586–589.CrossRefGoogle Scholar
  59. Schermer, M. (2011). Ethical issues in deep brain stimulation. Frontiers Integrative Neruoscience, 5, 17.Google Scholar
  60. Schneider, M.-J., Fins, J. J., & Wolpaw, J. R. (2012). Ethical issues in BCI research. In J. Wolpaw & E. Wolpaw (Eds.), Braincomputer interfaces: Principles and practice (pp. 373–383).Google Scholar
  61. Schrag, A., Hovris, A., Morley, D., Quinn, N., & Jahanshahi, M. (2006). Caregiver-burden in Parkinson’s disease is closely associated with psychiatric symptoms, falls, and disability. Parkinsonism & Related Disorders, 12(1), 35–41.CrossRefGoogle Scholar
  62. Schüpbach, M., Gargiulo, M., Welter, M. L., Mallet, L., Behar, C., Houeto, J. L., et al. (2006). Neurosurgery in Parkinson disease A distressed mind in a repaired body? Neurology, 66(12), 1811–1816.CrossRefGoogle Scholar
  63. Seidenberg, M., Pulsipher, D. T., & Hermann, B. (2007). Cognitive progression in epilepsy. Neuropsychology Review, 17(4), 445–454.CrossRefGoogle Scholar
  64. Sellars, A. (2010). Brain–computer interface for long-term independent home use. Amyo Lat Scl, 11, 449–455.CrossRefGoogle Scholar
  65. Siderowf, A., Jaggi, J. L., Xie, S. X., et al. (2006). Long-term effects of bilateral subthalamic nucleus stimulation on health-related quality of life in advanced Parkinson’s disease. Movement Disorders, 21(6), 746–753.CrossRefGoogle Scholar
  66. Skuban, T., Hardenacke, K., Woopen, C., & Kuhn, J. (2011). Informed consent in deep brain stimulation–ethical considerations in a stress field of pride and prejudice. Frontiers in Integrative Neuroscience, 5, 7. doi: 10.3389/fnint.2011.00007.CrossRefGoogle Scholar
  67. Synofzik, M. (2015). Deep brain stimulation research ethics: The ethical need for standardized reporting, adequate trial designs, and study registrations. In J. Clausen & N. Levy (Eds.), Handbook of neuroethics (pp. 621–633). Dordrecht: Springer.Google Scholar
  68. Synofzik, M., & Schlaepfer, T. E. (2008). Stimulating personality: Ethical criteria for deep brain stimulation in psychiatric patients and for enhancement purposes. Biotechnology Journal, 3(12), 1511–1520.CrossRefGoogle Scholar
  69. Synofzik, M., Schlaepfer, T. E., & Fins, J. J. (2012). How happy is too happy? Euphoria, neuroethics, and deep brain stimulation of the nucleus accumbens. AJOB Neuroscience, 3(1), 30–36.CrossRefGoogle Scholar
  70. U.S. National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. (1979). The Belmont report: Ethical guidelines for the protection of human subjects of research. Washington DC: U.S. Government Printing Office.Google Scholar
  71. Vlek, R. J., Steines, D., Szibbo, D., Kübler, A., Schneider, M.-J., Haselager, P., et al.(2012). Ethical issues in brain–computer interface research, development, and dissemination. Journal of Neurologic Physical Therapy, 36(2), 94–99.CrossRefGoogle Scholar
  72. Wardrope, A. (2014). Authenticity and autonomy in deep-brain stimulation. Journal of Medical Ethics, 40(8), 563–566.CrossRefGoogle Scholar
  73. Widge, A. S., Arulpragasam, A. R., Deckersbach, T., & Dougherty, D. D. (2015). Deep brain stimulation for psychiatric disorders. Emerging trends in the social and behavioral sciences: An interdisciplinary, searchable, and linkable resource (pp. 1–17).Google Scholar
  74. Witt, K., Kuhn, J., Timmermann, L., Zurowski, M., & Woopen, C. (2013). Deep brain stimulation and the search for identity. Neuroethics, 6(3), 499–511.CrossRefGoogle Scholar
  75. Wolaw, J., & Wolpaw, E. W. (2012). Brain–computer interfaces: Principles and practice. New York: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Philosophy and Center for Sensorimotor Neural EngineeringUniversity of WashingtonSeattleUSA
  2. 2.Department of NeurologyOregon Health and Sciences UniversityPortlandUSA

Personalised recommendations