Science and Engineering Ethics

, Volume 21, Issue 3, pp 541–554 | Cite as

Existential Risks: Exploring a Robust Risk Reduction Strategy

  • Karim JebariEmail author
Original Paper


A small but growing number of studies have aimed to understand, assess and reduce existential risks, or risks that threaten the continued existence of mankind. However, most attention has been focused on known and tangible risks. This paper proposes a heuristic for reducing the risk of black swan extinction events. These events are, as the name suggests, stochastic and unforeseen when they happen. Decision theory based on a fixed model of possible outcomes cannot properly deal with this kind of event. Neither can probabilistic risk analysis. This paper will argue that the approach that is referred to as engineering safety could be applied to reducing the risk from black swan extinction events. It will also propose a conceptual sketch of how such a strategy may be implemented: isolated, self-sufficient, and continuously manned underground refuges. Some characteristics of such refuges are also described, in particular the psychosocial aspects. Furthermore, it is argued that this implementation of the engineering safety strategy safety barriers would be effective and plausible and could reduce the risk of an extinction event in a wide range of possible (known and unknown) scenarios. Considering the staggering opportunity cost of an existential catastrophe, such strategies ought to be explored more vigorously.


Existential risk Black swan Engineering safety Safety barriers Uncertainty Shelters Global catastrophe 



I would like to thank Seth Baum, Nick Beckstead, Jacob Haqq-Misra, Niklas Möller, Aron Vallinder and two anonymous reviewers for Risk Analysis for their comments on earlier versions of this manuscript.

Conflict of interest



  1. Arrhenius, G. (2000). An impossibility theorem for welfarist axiologies. Economics and Philosophy, 16, 247–266.CrossRefGoogle Scholar
  2. Baker, J. W., Schubert, M., & Faber, M. H. (2008). On the assessment of robustness. Structural Safety, 30, 253–267. doi: 10.1016/j.strusafe.2006.11.004.CrossRefGoogle Scholar
  3. Bankes, S. C., Lempert, R. J., & Popper, S. W. (2003). Shaping the next one hundred years: New methods for quantitative, long-term policy analysis (186th ed.). Santa Monica, CA: Rand Publishing.Google Scholar
  4. Basner, M., Dinges, D. F., Mollicone, D. J., Savelev, I., Ecker, A. J., Di Antonio, A., et al. (2014). Psychological and behavioral changes during confinement in a 520-day simulated interplanetary mission to Mars. PLoS One, 9, e93298. doi: 10.1371/journal.pone.0093298.CrossRefGoogle Scholar
  5. Ben-Haim, Y. (2006). Info-gap decision theory: Decisions under severe uncertainty. Waltham: Academic Press.Google Scholar
  6. Blaszczynski, A., McConaghy, N., & Frankova, A. (1990). Boredom proneness in pathological gambling. Psychological Reports, 67, 35–42.CrossRefGoogle Scholar
  7. Bostrom, N. (2003). Astronomical waste: The opportunity cost of delayed technological development. Utilitas, 15, 308–314. doi: 10.1017/S0953820800004076.CrossRefGoogle Scholar
  8. Butts, G., & Linton, K. (2009). The joint confidence level paradox: A history of denial. Presented at the NASA Cost Symposium, 28–30 April 2009.Google Scholar
  9. Cirković, M. M., Sandberg, A., & Bostrom, N. (2010). Anthropic shadow: Observation selection effects and human extinction risks. Risk Analysis, 30, 1495–1506. doi: 10.1111/j.1539-6924.2010.01460.x.CrossRefGoogle Scholar
  10. Clutton-Brock, T. (2007). Sexual selection in males and females. Science, 318, 1882–1885. doi: 10.1126/science.1133311.CrossRefGoogle Scholar
  11. Cornil, A., Coster, A. D., Copinschi, G., & Franckson, J. R. M. (1965). Effect of muscular exercise on the plasma level of cortisol in man. Acta Endocrinologica (Copenh), 48, 163–168. doi: 10.1530/acta.0.0480163.Google Scholar
  12. Frankham, R. (2005). Genetics and extinction. Biological Conservation, 126, 131–140. doi: 10.1016/j.biocon.2005.05.002.CrossRefGoogle Scholar
  13. Hall, J. W., Lempert, R. J., Keller, K., Hackbarth, A., Mijere, C., & McInerney, D. J. (2012). Robust climate policies under uncertainty: A comparison of robust decision making and info-gap methods. Risk Analysis, 32, 1657–1672. doi: 10.1111/j.1539-6924.2012.01802.x.CrossRefGoogle Scholar
  14. Hanson, R. (2008). Catastrophe, social collapse, and human extinction. In N. Bostrom & M. M. Ćirković (Eds.), Global catastrophic risks (p. 554). Oxford: Oxford University Press.Google Scholar
  15. Hansson, S. O. (2009). From the casino to the jungle. Synthese, 168, 423–432. doi: 10.1007/s11229-008-9444-1.CrossRefGoogle Scholar
  16. Hernando, A., Villuendas, D., Vesperinas, C., Abad, M., & Plastino, A. (2009). Unravelling the size distribution of social groups with information theory on complex networks. The European Physical Journal B, 76(1), 87–97.Google Scholar
  17. Hey, J. (2005). On the number of New World founders: A population genetic portrait of the peopling of the Americas. PLoS Biology, 3, e193. doi: 10.1371/journal.pbio.0030193.CrossRefGoogle Scholar
  18. Highfield, R., (2001) 20:37. Colonies in space may be only hope, says Hawking. Scholar
  19. Ingersoll, D. T. (2009). Deliberately small reactors and the second nuclear era. Progress in Nuclear Energy, 51, 589–603. doi: 10.1016/j.pnucene.2009.01.003.CrossRefGoogle Scholar
  20. Kanas, N., & Manzey, D. (2008). Basic issues of human adaptation to space flight. In Space psychology and psychiatry. The Space Technology Library (Vol. 22, pp. 15–48). Netherlands: Springer.Google Scholar
  21. Kaufman, M. (2011). Landing on Mars is hard, but another mission to the Red Planet is about to begin. Washington: Washington Post, November 22, sec. National.Google Scholar
  22. Launius, R. D. (2010). Can we colonize the solar system? Human biology and survival in the extreme space environment. Endeavour, 34, 122–129. doi: 10.1016/j.endeavour.2010.07.001.CrossRefGoogle Scholar
  23. Linkov, I., Bates, M., Loney, D., Sparrevik, M., & Bridges, T. (2011). Risk management practices. In I. Linkov & T. S. Bridges (Eds.), Climate, NATO science for peace and security series C: Environmental security (pp. 133–155). Netherlands: Springer.Google Scholar
  24. MacCallum, T., Poynter, J., & Bearden, D. (2004). Lessons learned from biosphere 2: When viewed as a ground simulation/analog for long duration human space exploration and settlement (SAE Technical Paper No. 2004-01-2473). SAE International, Warrendale, PA.Google Scholar
  25. Maher, T. M., & Baum, S. D. (2013). Adaptation to and recovery from global catastrophe. Sustainability, 5, 1461–1479. doi: 10.3390/su5041461.CrossRefGoogle Scholar
  26. Matheny, J. G. (2007). Reducing the risk of human extinction. Risk Analysis, 27, 1335–1344. doi: 10.1111/j.1539-6924.2007.00960.x.CrossRefGoogle Scholar
  27. Möller, N., & Hansson, S. O. (2008). Principles of engineering safety: Risk and uncertainty reduction. Reliability Engineering and System Safety, 93, 798–805. doi: 10.1016/j.ress.2007.03.031.CrossRefGoogle Scholar
  28. Moses, F. (1997). Problems and prospects of reliability-based optimization. Engineering Structures, 19, 293–301. doi: 10.1016/S0141-0296(97)83356-1.CrossRefGoogle Scholar
  29. Palinkas, L. A. (2003). The psychology of isolated and confined environments. Understanding human behavior in Antarctica. American Psychologist, 58, 353–363.CrossRefGoogle Scholar
  30. Parfit, D. A. (1984). Reasons and persons. Oxford: Oxford University Press.Google Scholar
  31. Pretty, J., Peacock, J., Sellens, M., & Griffin, M. (2005). The mental and physical health outcomes of green exercise. International Journal of Environmental Health Research, 15, 319–337. doi: 10.1080/09603120500155963.CrossRefGoogle Scholar
  32. Sabathier, V.G., Weppler, J., & Bander, A. (2009). Costs of an International Lunar Base | [WWW Document]. Center for Strategic and International Studies. Accessed April 14, 2014.
  33. Sagan, C. (1983). Nuclear war and climatic catastrophe: Some policy implications. Foreign Affairs, 257–292.Google Scholar
  34. Taleb, N. N. (2010). The black swan: The impact of the highly improbable. New York: Random House Trade Paperbacks.Google Scholar
  35. Tonn, B. E. (2007). Futures sustainability. Futures, 39, 1097–1116. doi: 10.1016/j.futures.2007.03.018.CrossRefGoogle Scholar
  36. Wang, Y., Jing, X., Lv, K., Wu, B., Bai, Y., Luo, Y., et al. (2014). During the long way to Mars: Effects of 520 days of confinement (Mars500) on the assessment of affective stimuli and stage alteration in mood and plasma hormone levels. PLoS One, 9, e87087. doi: 10.1371/journal.pone.0087087.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Royal Institute of Technology, KTHStockholmSweden

Personalised recommendations