Advertisement

Science and Engineering Ethics

, Volume 20, Issue 4, pp 1111–1128 | Cite as

Examining the Role of Carbon Capture and Storage Through an Ethical Lens

  • Fabien MedveckyEmail author
  • Justine Lacey
  • Peta Ashworth
Original Paper

Abstract

The risk posed by anthropogenic climate change is generally accepted, and the challenge we face to reduce greenhouse gas (GHG) emissions to a tolerable limit cannot be underestimated. Reducing GHG emissions can be achieved either by producing less GHG to begin with or by emitting less GHG into the atmosphere. One carbon mitigation technology with large potential for capturing carbon dioxide at the point source of emissions is carbon capture and storage (CCS). However, the merits of CCS have been questioned, both on practical and ethical grounds. While the practical concerns have already received substantial attention, the ethical concerns still demand further consideration. This article aims to respond to this deficit by reviewing the critical ethical challenges raised by CCS as a possible tool in a climate mitigation strategy and argues that the urgency stemming from climate change underpins many of the concerns raised by CCS.

Keywords

CCS Climate change Ethics Intergenerational justice Mitigation Responsibility Risk 

References

  1. Ackerman, F., & Heinzerling, L. (2001). Pricing the priceless: Cost-benefit analysis of environmental protection. University of Pennsylvania Law Review, 150, 1553.Google Scholar
  2. Ashworth, P., Boughen, N., Mayhew, M., & Millar, F. (2010). From research to action: Now we have to move on CCS communication. International Journal of Greenhouse Gas Control, 4(2), 426–433.Google Scholar
  3. Ashworth, P., Bradbury, J., Wade, S., Ynke Feenstra, C. F. J., Greenberg, S., Hund, G., et al. (2012). What’s in store: Lessons from implementing CCS. International Journal of Greenhouse Gas Control, 9, 402–409.Google Scholar
  4. Bell, D. (2010). Justice and the politics of climate change. In C. Lever-Tracy (Ed.), Routledge handbook of climate change and society (pp. 423–441). New York: Routledge.Google Scholar
  5. Bellona Foundation. (2008). How to combat global warming. http://www.bellona.org/filearchive/fil_Bellona_CC8_Report_-_Final_version_-_30_mai.pdf. Accessed 30 March 2013.
  6. Bradbury, J., Greenberg, S., & Wade, S. (2011). Communicating the risks of CCS. Washington DC: Wade LLC.Google Scholar
  7. Bradbury, J., Ray, I., Peterson, T., Wade, S., Wong-Parodi, G., & Feldpausch, A. (2009). The role of social factors in shaping public perceptions of CCS: Results of multi-state focus group interviews in the US. Energy Procedia, 1(1), 4665–4672.Google Scholar
  8. Broome, J. (2008). The ethics of climate change. Scientific American, 298(6), 96–102.Google Scholar
  9. Brown, D. A. (2003). The importance of expressly examining global warming policy issues through an ethical prism. Global Environmental Change, 13, 229–234.Google Scholar
  10. Brown, D.A. (2008). The ethics of allocating public research funds for carbon capture and storage. http://blogs.law.widener.edu/climate/2008/10/16/the-ethics-of-allocating-public-research-funds-for-carbon-capture-and-storage/. Accessed 30 March 2013.
  11. Brown, D. A. (2011). Comparative ethical issues entailed in the geological disposal of radioactive waste and carbon dioxide in the light of climate change. In F. L. Toth (Ed.), Geological disposal of carbon dioxide and radioactive waste: A comparative assessment (pp. 317–337). Dordrecht: Springer.Google Scholar
  12. Brown, D. A. (2013). Climate change ethics: Navigating the perfect moral storm. London: Routledge.Google Scholar
  13. Brown, D. A., Tuana, N., Averill, M., Baer, P., Born, R., Lessa Brandão, C. E., et al. (2009). White paper on the ethical dimensions of climate change. Pennsylvania: Rock Ethics Institute, Penn State University.Google Scholar
  14. Brunsting, S., Upham, P., Duetschke, E., De Best Waldhober, M., Oltra, C., Desbarats, J., et al. (2011). Communicating CCS: Applying communications theory to public perceptions of carbon capture and storage. International Journal of Greenhouse Gas Control, 5(6), 1651–1662.Google Scholar
  15. Caney, S. (2009). Climate change and the future: Discounting for time, wealth, and risk. Journal of Social Philosophy, 40(2), 163–186.Google Scholar
  16. Caney, S. (2010). Climate change, human rights, and moral thresholds. In S. Gardiner, S. Caney, D. Jamieson, & H. Shue (Eds.), Climate ethics: Essential readings (pp. 163–177). Oxford: Oxford University Press.Google Scholar
  17. Chalkidou, K., Lord, J., Fischer, A., & Littlejohns, P. (2008). Evidence-based decision making: when should we wait for more information? Health Affairs, 27(6), 1642–1653.Google Scholar
  18. Cole, I. S., Corrigan, P., Sim, S., & Birbilis, N. (2011). Corrosion of pipelines used for CO2 transport in CCS: Is it a real problem? International Journal of Greenhouse Gas Control, 5(4), 749–756.Google Scholar
  19. Darwall, S. L. (2003). Theories of Ethics. In R. G. Frey & C. H. Wellman (Eds.), A companion to applied ethics (pp. 17–37). Oxford: Blackwell.Google Scholar
  20. de Coninck, H. (2008). Trojan horse or horn of plenty? Reflections on allowing CCS in the CDM. Energy Policy, 36(3), 929–936.Google Scholar
  21. de Coninck, H., & Bäckstrand, K. (2011). An international relations perspective on the global politics of carbon dioxide capture and storage. Global Environmental Change, 21(2), 368–378.Google Scholar
  22. de Coninck, H., Stephens, J. C., & Metz, B. (2009). Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration. Energy Policy, 37(6), 2161–2165.Google Scholar
  23. Dietz, S., Hepburn, C. & Stern, N. (2007). Economics, ethics and climate change. http://dx.doi.org/10.2139/ssrn.1090572. Accessed 13 Aug 2012.
  24. Durant, J. (1999). Participatory technology assessment and the democratic model of the public understanding of science. Science and Public Policy, 26(5), 313–319.Google Scholar
  25. Einsiedel, E. F., Boyd, A. D., Medlock, J., & Ashworth, P. (2013). Assessing socio-technical mindsets: Public deliberations on carbon capture and storage in the context of energy sources and climate change. Energy Policy, 53, 149–158.Google Scholar
  26. Ekeli, K. S. (2004). Environmental risks, uncertainty and intergenerational ethics. Environmental Values, 13(4), 421–448.Google Scholar
  27. Fentiman, A. (2013). Radioactive waste management: Storage, transport, disposal. In N. Tsoulfanidis (Ed.), Nuclear energy (pp. 269–282). New York: Springer.Google Scholar
  28. Fischhoff, B., & Fischhoff, I. (2001). Public opinions about biotechnologies. AgBioForum, 4(3&4), 155–162.Google Scholar
  29. Forster, M., & Pertile, P. (2012). Optimal decision rules for HTA under uncertainty: A wider, dynamic perspective. Health Economics,. doi: 10.1002/hec.2893.Google Scholar
  30. Gardiner, S. (2003). The pure intergenerational problem. Monist: An International Quarterly Journal of General Philosophical Inquiry, 86(3), 481–500.Google Scholar
  31. Gardiner, S. (2006). A perfect moral storm: Climate change, intergenerational ethics and the problem of moral corruption. Environmental Values, 15(3), 397–413.Google Scholar
  32. Gardiner, S. M. (2011). Climate justice. In D. Schlosberg, R. B. Norgaard, & J. S. Dryzek (Eds.), The Oxford handbook of climate change and society (pp. 309–322). Oxford: Oxford University Press.Google Scholar
  33. Gardiner, S. & Hartzell-Nichols, L. (2012). Ethics and global climate change. Nature Education Knowledge, 3(10), 5. Google Scholar
  34. Garnaut, R. (2011). The Garnaut review 2011: Australia in the global response to climate change. Cambridge: Cambridge University Press.Google Scholar
  35. Garrod, G., & Willis, K. G. (1999). Economic valuation of the environment: Methods and case studies. London: Edward Elgar.Google Scholar
  36. Garvey, J. (2008). The ethics of climate change: Right and wrong in a warming world. London: Continuum.Google Scholar
  37. GCCSI. (2011). The global status of CCS: 2011. Canberra: Global CCS Institute.Google Scholar
  38. GCCSI. (2012). The global status of CCS: 2012. Canberra: Global CCS Institute.Google Scholar
  39. Genus, A. (2006). Rethinking constructive technology assessment as democratic, reflective, discourse. Technological Forecasting and Social Change, 73(1), 13–26.Google Scholar
  40. Goodin, R. E. (1996). Enfranchising the earth, and its alternatives. Political Studies, 44(5), 835–849.Google Scholar
  41. Gosseries, A. (2008). On future generations’ future rights. Journal of Political Philosophy, 16(4), 446–474.Google Scholar
  42. Gough, C., & Boucher, P. (2013). Ethical attitudes to underground CO2 storage: Points of convergence and potential faultlines. International Journal of Greenhouse Gas Control, 13, 156–167.Google Scholar
  43. Grey, W. (1996). Possible persons and the problems of posterity. Environmental Values, 5(2), 161–179.Google Scholar
  44. Ha-Duong, M., & Loisel, R. (2011). Actuarial risk assessment of expected fatalities attributable to carbon capture and storage in 2050. International Journal of Greenhouse Gas Control, 5, 1346–1358.Google Scholar
  45. Hansen, J., Sato, M., Kharecha, P., Beerling, D., Masson-Delmotte, V., Pagani, M., et al. (2008). Target atmospheric CO2: Where should humanity aim? The Open Atmospheric Science Journal, 2, 217–231.Google Scholar
  46. Hansson, A., & Bryngelsson, M. (2009). Expert opinions on carbon dioxide capture and storage—a framing of uncertainties and possibilities. Energy Policy, 37(6), 2273–2282.Google Scholar
  47. Haszeldine, R. S. (2009). Carbon capture and storage: How green can black be? Science, 325(5948), 1647–1652.Google Scholar
  48. Holland, S., & Hope, T. (2012). The ethics of attaching research conditions to access to new health technologies. Journal of Medical Ethics, 38(6), 366–371.Google Scholar
  49. House, K. Z., Harvey, C. F., Aziz, M. J., & Schrag, D. P. (2009). The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the US installed base. Energy & Environmental Science, 2(2), 193–205.Google Scholar
  50. Howarth, R. B. (2009). Discounting, uncertainty, and revealed time preference. Land Economics, 85(1), 24.Google Scholar
  51. Hughes, L. (2009). The four ‘R’s of energy security. Energy Policy, 37(6), 2459–2461.Google Scholar
  52. Huijts, N. M. A., Midden, C. J. H., & Meijnders, A. L. (2007). Social acceptance of carbon dioxide storage. Energy Policy, 35(5), 2780–2789.Google Scholar
  53. Huijts, N. M. A., Molin, E. J. E., & Steg, L. (2012). Psychological factors influencing sustainable energy technology acceptance: A review-based comprehensive framework. Renewable and Sustainable Energy Reviews, 16(1), 525–531.Google Scholar
  54. IEA. (2008). Energy technology perspectives 2008: Scenarios & strategies to 2050. Paris: OECD/IEA.Google Scholar
  55. IEA. (2009). Technology roadmap: Carbon capture and storage. Paris: OECD/IEA.Google Scholar
  56. IEA. (2013). Tracking clean energy progress 2013. Paris: OECD/IEA.Google Scholar
  57. IPCC. (2005). In B. Metz, O. R. Davidson, H. C. de Coninck, M. Loos, & L. A. Meyer (Eds.), IPCC special report on carbon dioxide capture and storage. Cambridge: Cambridge University Press. Google Scholar
  58. IPCC. (2007a). Climate change: The physical science basis. In S. Soloman, D. Qin, & M. Manning (Eds.), Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (p. 703). Cambridge: Cambridge University Press.Google Scholar
  59. IPCC. (2007b). Glossary. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Fourth Assessment Report Climate Change 2007: Mitigation of Climate Change, IPCC Working Group 3 (p. 818). Cambridge: Cambridge University Press.Google Scholar
  60. IPCC. (2011). Renewable energy sources and climate change mitigation. Cambridge: Cambridge University Press.Google Scholar
  61. Jamieson, D. (1992). Ethics, public policy and global warming. Science, Technology and Human Values, 17(2), 139–153.Google Scholar
  62. Jasanoff, S. (2003). Technologies of humility: Citizen participation in governing science. Minerva, 41, 223–244.Google Scholar
  63. Kagan, S. (1998). Normative ethics. Boulder, CO: Westview Press.Google Scholar
  64. Kavka, G. S. (1982). The paradox of future individuals. Philosophy & Public Affairs, 11(2), 93–112.Google Scholar
  65. Klinsky, S., & Dowlatabadi, H. (2009). Conceptualizations of justice in climate policy. Climate Policy, 9(1), 88–108.Google Scholar
  66. LaFollette, H. (Ed.). (2002). Ethics in practice (2nd ed.). Oxford: Blackwell Publishers.Google Scholar
  67. Lamont, J., & Lacey, J. (2006). The ethics of patents on genetically modified organisms. Australian Journal of Professional and Applied Ethics, 8(2), 1–11.Google Scholar
  68. Liang, X., Reiner, D., & Li, J. (2011). Perceptions of opinion leaders towards CCS demonstration projects in China. Applied Energy, 88(5), 1873–1885.Google Scholar
  69. Lind, E. A., & Tyler, T. R. (1988). The social psychology of procedural justice. New York: Plenum.Google Scholar
  70. Littlecott, C. (Ed.). (2008). A last chance for coal: Making carbon capture and storage a reality. London: Green Alliance.Google Scholar
  71. Longworth, L., Youn, J., Bojke, L., Palmer, S., Griffin, S., Spackman, E., et al. (2013). When does NICE recommend the use of health technologies within a programme of evidence development?: A systematic review of NICE guidance. Pharmacoeconomics, 31(2), 137.Google Scholar
  72. Marglin, S. A. (1963). The social rate of discount and the optimal rate of investment. The Quarterly Journal of Economics, 77(1), 95–111.Google Scholar
  73. Markowitz, E. M., & Shariff, A. F. (2012). Climate change and moral judgement. Nature Climate Change, 2(4), 243–247.Google Scholar
  74. Mazzoldi, A., Hill, T., & Colls, J. J. (2011). Assessing the risk for CO2 transportation within CCS projects, CFD modelling. International Journal of Greenhouse Gas Control, 5(4), 816–825.Google Scholar
  75. Medvecky, F. (2012). Valuing environmental costs and benefits in an uncertain future: Risk aversion and discounting. Erasmus Journal for Philosophy and Economics, 5(1), 1–23.Google Scholar
  76. Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler, K., Knutti, R., et al. (2009). Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 458(7242), 1158–1162.Google Scholar
  77. Möller, N., & Hansson, S. O. (2008). Principles of engineering safety: Risk and uncertainty reduction. Reliability Engineering and System Safety, 93, 776–783.Google Scholar
  78. NOAH. (2009). NOAH’s position on CCS as a climate change tool (long version). Friends of the Earth, Denmark. http://ccs-info.org/pos_long.pdf. Accessed 30 March 2013.
  79. Nordhaus, W. D. (2007). A review of the Stern review on the economics of climate change. Journal of Economic Literature, 45(3), 686–702.Google Scholar
  80. Pacala, S., & Socolow, R. (2004). Stabilisation wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305, 968–972.Google Scholar
  81. Parfit, D. (1987). Reasons and persons. Oxford: Clarendon Press.Google Scholar
  82. Peters, G. P., Andrew, R. M., Boden, T., Canadell, J. G., Ciais, P., Le Quéré, C., et al. (2013). The challenge to keep global warming below 2°C. Nature Climate Change, 3, 4–6.Google Scholar
  83. Pielke, R., Prins, G., Rayner, S., & Sarewitz, D. (2007). Lifting the taboo on adaptation. Nature, 445, 8.Google Scholar
  84. Pisarski, A., & Ashworth, P. (2013). The citizen’s round table process: Canvassing public opinion on energy technologies to mitigate climate change. Journal of Climatic Change, 119(2), 533–546.Google Scholar
  85. Quiggin, J. (2008). Stern and his critics on discounting and climate change: An editorial essay. Climatic Change, 89(3), 195–205.Google Scholar
  86. Rawls, J. (1971). A theory of justice. Cambridge: Harvard University Press.Google Scholar
  87. Reiner, D. M., & Nuttall, W. J. (2011). Public acceptance of geological disposal of carbon dioxide and radioactive waste: Similarities and differences. In F. L. Toth (Ed.), Geological disposal of carbon dioxide and radioactive waste: A comparative assessment (pp. 295–315). Dordrecht: Springer.Google Scholar
  88. Rimmer, M. (2012). The Doha deadlock: Intellectual property and climate change. The Conversation, 11 December. http://theconversation.com/the-doha-deadlockintellectual-property-and-climate-change-11244. Accessed 15 Feb 2013.
  89. Rochon, E., Kuper, J., Bjureby, E., Johnston, P., Oakley, R., Santillo, D., et al. (2008). False hope: Why carbon capture and storage won’t save the climate. Amsterdam: Greenpeace International.Google Scholar
  90. Rogowski, W. H. (2010). What should public health research focus on? Comments from a decision analytic perspective. The European Journal of Public Health, 20(5), 484–485.Google Scholar
  91. Sayre-McCord, G. (2012). Metaethics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2012 Edition). http://plato.stanford.edu/archives/spr2012/entries/metaethics/. Accessed 7 Sept 2013.
  92. Schot, J. (2001). Towards new forms of participatory technology development. Technology Analysis & Strategic Management, 13(1), 39–52.Google Scholar
  93. Sethi, N. (2012). Doha climate talks: Rich nations reject India’s offer on intellectual property concerns. The Times of India, 6 December. http://articles.timesofindia.indiatimes.com/2012-12-06/developmentalissues/35646306_1_climate-talks-climatenegotiations-iprs. Accessed 18 Feb 2013.
  94. Shaffer, G. (2010). Long-term effectiveness and consequences of carbon dioxide sequestration. Nature Geoscience, 3(7), 464–467.Google Scholar
  95. Shue, H. (1993). Subsistence emissions and luxury emissions. Law and Policy, 15, 39–59.Google Scholar
  96. Shue, H. (1999). Global environment and international inequality. International Affairs, 75, 531–545.Google Scholar
  97. Singer, P. (Ed.). (1994). Ethics. Oxford: Oxford University Press.Google Scholar
  98. Singer, P. (1999). Practical ethics (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  99. Singleton, G., Herzog, H., & Ansolabehere, S. (2009). Public risk perspectives on the geologic storage of carbon dioxide. International Journal of Greenhouse Gas Control, 3(1), 100–107.Google Scholar
  100. Slovic, P. (1993). Perceived risk, trust and democracy. Risk Analysis, 13(6), 675–682.Google Scholar
  101. Sotoudeh, M. (2009). Technical education for sustainability. Frankfurt: Peter Lang.Google Scholar
  102. Spreng, D., Marland, G., & Weinberg, A. M. (2007). CO2 capture and storage: Another Faustian Bargain? Energy Policy, 35(2), 850–854.Google Scholar
  103. Stern, N. (2007). The economics of climate change: The Stern review. Cambridge: Cambridge University Press.Google Scholar
  104. Taylor-Gooby, P., & Zinn, J. O. (2006). Risk in social science. Oxford: Oxford University Press.Google Scholar
  105. ter Mors, E., Terwel, B. W., & Daamen, D. D. L. (2012). The potential of host community compensation in facility siting. International Journal of Greenhouse Gas Control, 11, S130–S138.Google Scholar
  106. Terwel, B. W., Harinck, F., Ellemers, N., & Daamen, D. D. L. (2010). Voice in political decision-making: The effect of group voice on perceived trustworthiness of decision makers and subsequent acceptance of decisions. Journal of Experimental Psychology: Applied, 16, 173–186.Google Scholar
  107. Thompson, D. (1985). Philosophy and policy. Philosophy & Public Affairs, 14(2), 205–218.Google Scholar
  108. Torvanger, A., & Meadowcroft, J. (2011). The political economy of technology support: Making decisions about carbon capture and storage and low carbon energy technologies. Global Environmental Change, 21(2), 303–312.Google Scholar
  109. Upham, P., & Roberts, T. (2011). Public perceptions of CCS: Emergent themes in pan-European focus groups and implications for communications. International Journal of Greenhouse Gas Control, 5(5), 1359–1367.Google Scholar
  110. van der Zwaan, B., & Gerlagh, R. (2009). Economics of geological CO2; storage and leakage. Climatic Change, 93(3), 285–309.Google Scholar
  111. Wallquist, L., Seigo, S. L., Visschers, V. H. M., & Siegrist, M. (2012). Public acceptance of CCS system elements: A conjoint measurement. International Journal of Greenhouse Gas Control, 6, 77–83.Google Scholar
  112. Warshofsky, F. (1994). The patent wars: The battle to own the world’s technology. New York: Wiley.Google Scholar
  113. West, J. M., Shaw, R. P., & Pearce, J. M. (2011). Environmental issues in the geological disposal of carbon dioxide and radioactive waste. In F. L. Toth (Ed.), Geological disposal of carbon dioxide and radioactive waste: A comparative assessment (pp. 81–102). Dordrecht: Springer.Google Scholar
  114. Wilson, E. J., Johnson, T. L., & Keith, D. W. (2003). Regulating the ultimate sink: Managing the risks of geologic CO2 storage. Environmental Science and Technology, 37(16), 3476–3483.Google Scholar
  115. Wuebbles, D. J., & Jain, A. K. (2001). Concerns about climate change and the role of fossil fuel use. Fuel Processing Technology, 71(1–3), 99–119.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.The University of QueenslandSt LuciaAustralia
  2. 2.Division of Earth Science and Resource EngineeringCommonwealth Scientific and Industrial Research Organisation (CSIRO), QCATKenmoreAustralia

Personalised recommendations