Science and Engineering Ethics

, Volume 18, Issue 3, pp 447–452 | Cite as

Biological Indeterminacy

  • Ralph J. Greenspan
Original Paper


Reductionist explanations in biology generally assume that biological mechanisms are highly deterministic and basically similar between individuals. A contrasting view has emerged recently that takes into account the degeneracy of biological processes—the ability to arrive at a given endpoint by a variety of available paths, even within the same individual. This perspective casts significant doubt on the prospects for the ability to predict behavior accurately based on brain imaging or genotyping, and on the ability of neuroscience to stipulate ethics.


Reductionism Chance Degeneracy Networks Individuality Genes Neural circuits 


  1. Bell, W. J. (1990). Searching behavior. New York: Chapman and Hall.Google Scholar
  2. Bellone, E. (1980). A world on paper: Studies on the second scientific revolution. Cambridge: MIT Press.Google Scholar
  3. Berg, H. C. (1983). Random walks in biology. Princeton, NJ: Princeton University Press.Google Scholar
  4. Briggman, K. L., Abarbanel, H. D., & Kristan, W. B. (2006). From crawling to cognition, analyzing the dynamical interactions among populations of neurons. Current Opinion in Neurobiology, 16, 135–144.CrossRefGoogle Scholar
  5. Chen, R., Cohen, L. G., & Hallett, M. (2002). Nervous system reorganization following injury. Neuroscience, 111, 761–773.CrossRefGoogle Scholar
  6. Churchland, P. S. (2011). Brain trust. Princeton, NJ: Princeton U. Press.Google Scholar
  7. Dewey, J. (1910). The influence of Darwin on philosophy. In J. Dewey (Ed.), The influence of Darwin on philosophy and other essays. New York: H. Holt & Co.Google Scholar
  8. Dierick, H. A., & Greenspan, R. J. (2006). Molecular analysis of flies selected for aggressive behavior. Nature Genetics, 38, 1023–1031.CrossRefGoogle Scholar
  9. Edelman, G. M. (1987). Neural Darwinism. New York: Basic Books.Google Scholar
  10. Edelman, G. M., & Gally, J. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences USA, 98, 13763–13768.CrossRefGoogle Scholar
  11. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700–711.CrossRefGoogle Scholar
  12. Georgopoulos, A. P. (1994). Population activity in the control of movement. International Review of Neurobiology, 37, 103–119.CrossRefGoogle Scholar
  13. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm, a critique of the adaptationist programme. Proceedings of the Royal Society of London Series B, 205, 581–598.CrossRefGoogle Scholar
  14. Greenspan, R. J. (2001a). The flexible genome. Nature Reviews Genetics, 2, 383–387.CrossRefGoogle Scholar
  15. Greenspan, R. J. (2001b). History, biology and individuality. Nimrod, 45, 141–151.Google Scholar
  16. Greenspan, R. J. (2009). Selection, gene interaction, and flexible gene networks. Cold Spring Harbor Symposium on Quantitative Biology, 74, 131–138.CrossRefGoogle Scholar
  17. Hartman, J. L., IV, Garvik, B., & Hartwell, L. (2001). Principles for the buffering of genetic variation. Science, 291, 1001–1004.CrossRefGoogle Scholar
  18. Heisenberg, M. (1994). Voluntariness (Willkurfahigkeit) and the general organization of behavior. In R. J. Greenspan & C. P. Kyriacou (Eds.), Flexibility and constraint in behavioral systems (pp. 147–156). New York: Wiley.Google Scholar
  19. Hirsch, J. (1963). Behavior genetics and individuality understood. Science, 142, 1436–1442.CrossRefGoogle Scholar
  20. Nowak, M. A., Boerlijst, M. C., Cooke, J., & Smith, J. M. (1997). Evolution of genetic redundancy. Nature, 388, 167–171.CrossRefGoogle Scholar
  21. Pinker, S. (1997). How the mind works. New York: W.W. Norton Inc.Google Scholar
  22. Srinivasan, R., Russell, D. P., Edelman, G. M., & Tononi, G. (1999). Increased synchronization of neuromagnetic responses during conscious perception. Journal of Neuroscience, 19, 5435–5448.Google Scholar
  23. Toma, D. P., White, K. P., Hirsch, J., & Greenspan, R. J. (2002). Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nature Genetics, 31, 349–353.Google Scholar
  24. Tononi, G., Edelman, G. M., & Sporns, O. (1998). Complexity and coherency, integrating information in the brain. Trends in Cognitive Science, 2, 474–484.CrossRefGoogle Scholar
  25. Wu, J. Y., Tsau, Y., Hopp, H. P., Cohen, L. B., Tang, A. C., & Falk, C. X. (1994). Consistency in nervous systems, trial-to-trial and animal-to-animal variations in the responses to repeated applications of a sensory stimulus in Aplysia. Journal of Neuroscience, 14, 1366–1384.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Kavli Institute for Brain and MindUniversity of California San DiegoLa JollaUSA

Personalised recommendations