Advertisement

Science and Engineering Ethics

, Volume 19, Issue 1, pp 237–258 | Cite as

Sustaining Engineering Codes of Ethics for the Twenty-First Century

  • Diane Michelfelder
  • Sharon A. JonesEmail author
Article

Abstract

How much responsibility ought a professional engineer to have with regard to supporting basic principles of sustainable development? While within the United States, professional engineering societies, as reflected in their codes of ethics, differ in their responses to this question, none of these professional societies has yet to put the engineer’s responsibility toward sustainability on a par with commitments to public safety, health, and welfare. In this paper, we aim to suggest that sustainability should be included in the paramountcy clause because it is a necessary condition to ensure the safety, health, and welfare of the public. Part of our justification rests on the fact that to engineer sustainably means among many things to consider social justice, understood as the fair and equitable distribution of social goods, as a design constraint similar to technical, economic, and environmental constraints. This element of social justice is not explicit in the current paramountcy clause. Our argument rests on demonstrating that social justice in terms of both inter- and intra-generational equity is an important dimension of sustainability (and engineering). We also propose that embracing sustainability in the codes while recognizing the role that social justice plays may elevate the status of the engineer as public intellectual and agent of social good. This shift will then need to be incorporated in how we teach undergraduate engineering students about engineering ethics.

Keywords

Engineering codes of ethics Engineering education Paramountcy clause Social justice Sustainability 

Notes

Acknowledgments

A version of this paper was presented at the 2010 meeting of the Forum for Philosophy, Engineering, and Technology (fPET) at the Colorado School of Mines in Golden, Colorado. We want to thank the anonymous reviewers who considered our abstract for this conference for their constructive and helpful suggestions, as well as those who reviewed this paper for publication in this journal.

References

  1. Agyeman, J. (2005). Alternatives for community and environment: where justice and sustainability meet. Environment: Science and Policy for Sustainable Development, 47(6), 10–23.Google Scholar
  2. Agyeman, J., & Evans, T. (2003). Toward just sustainability in urban communities: building equity rights with sustainable solutions. The ANNALS of the American Academy of Political and Social Science, 590(1), 35–53.CrossRefGoogle Scholar
  3. AIChE. (2010). Space for ethics in sustainability. The Reactor. Blog. http://chenected.aiche.org . Accessed 19 April 2010.
  4. Allenby, B. (2009). Industrial ecology. In J. B. Callicott & R. Frodeman (Eds.), Encyclopedia of Environmental Ethics and Philosophy (pp. 517–518). New York: MacMillan Reference.Google Scholar
  5. Baillie, C., & Catalano, G. (2009). Engineering and society: Working toward social justice. San Rafael, CA: Morgan & Claypool.Google Scholar
  6. Barry, B. (1999). Sustainability and intergenerational justice. In A. Dobson (Ed.), Fairness and Futurity: Essays on Environmental Sustainability and Social Justice (pp. 43–65). Oxford: Oxford University Press.Google Scholar
  7. Bridger, J., & Luloff, A. (1999). Toward an interactional approach to sustainable community development. Journal of Rural Studies, 15(4), 377–387.CrossRefGoogle Scholar
  8. Catalano, G. (2006a). Engineering Ethics: Peace, Justice, and the Earth. San Rafael, CA: Morgan & Claypool.Google Scholar
  9. Catalano, G. (2006b, June). Engineering in a morally deep world: applications and reflections. Paper presented at the 113th annual ASEE conference and exposition, Chicago, IL.Google Scholar
  10. Craig, P., Glasser, H., & Kempton, W. (1993). Ethics and values in environmental policy. Environmental Values, 2(2), 137–157.CrossRefGoogle Scholar
  11. Davis, M. (2001). Three myths about codes of engineering ethics. IEEE Technology and Society Magazine, 20(3), 8–14.CrossRefGoogle Scholar
  12. de Graaff, J. V. (1975). Theoretical Welfare Economics. Cambridge: Cambridge University Press. (first published 1957).Google Scholar
  13. Dreyer, L. C., Hauschild, M. Z., & Schierbeck, J. (2006). A framework for social life cycle impact assessment. The International Journal of Life Cycle Assessment, 11(2), 88–97.CrossRefGoogle Scholar
  14. Gibbons, M. (2009). Engineering by the Numbers. Washington, DC: American Society of Engineering Education.Google Scholar
  15. Herkert, J. (2009). Macroethics in engineering: the case of climate change. In S. H. Christensen, B. Delahousse, & M. Meganck (Eds.), Engineering in Context (pp. 435–445). Aarhus, Denmark: Academica.Google Scholar
  16. Iverson, D. (1994). Critiques of cost-benefit analysis. Ecological Economics. Online discussion. http://www.fs.fed.us/eco/eco-watch/econcritiques.html. Accessed 25 November 2010.
  17. Jamieson, D. (1996). Ethics and intentional climate change. Climatic Change, 33(3), 323–336.Google Scholar
  18. Jamieson, D. (1992). Ethics, public policy, and global warming. Science Technology and Human Values, 17(2), 139–153.CrossRefGoogle Scholar
  19. Johnston, R. (1997). A critique of life cycle analysis: paper products. In D. J. Richards (Ed.), The Industrial Green Game (pp. 225–233). Washington, DC: National Academy Press.Google Scholar
  20. Linver, M. R., Davis-Kean, P., & Eccles, J. E. (2002, April). Influences of gender on academic achievement. Paper presented at the biennial meetings of the Society for Research on Adolescence, New Orleans, LA.Google Scholar
  21. Lucena, J., Schneider, J., & Leydens, J. (2010). Engineering and Sustainable Development. San Rafael: Morgan & Claypool.Google Scholar
  22. Mihelcic, J., Crittenden, J., Small, M., Shonnard, D., Hokanson, D., Zhang, Q., et al. (2003). Sustainability science and engineering: emergence of a new metadiscipline. Environmental Science and Technology, 37(23), 5314–5324.CrossRefGoogle Scholar
  23. Miller, D. (1999). Social justice and environmental goods. In A. Dobson (Ed.), Fairness and Futurity: Essays on Environmental Sustainability and Social Justice (pp. 151–172). Oxford: Oxford University Press.CrossRefGoogle Scholar
  24. Mitcham, C. (2009). A historic-ethical perspective on engineering education: from use and convenience to policy engagement. Engineering Studies, 1(1), 35–53.CrossRefGoogle Scholar
  25. National Science Foundation, Division of Science Resources Statistics. (2007). First-time full-time graduate student enrollment in science and engineering increases in 2006 especially among foreign students. Arlington, VA: NSF 08-302.Google Scholar
  26. Rawls, J. (1971, revised 1999). A Theory of Justice. Cambridge, MA: Harvard University Press.Google Scholar
  27. Riley, D. (2008). Engineering and Social Justice. San Rafael: Morgan & Claypool.Google Scholar
  28. Sagoff, M. (2004). Price, Principle and the Environment. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  29. Sagoff, M. (2007). The Economy of the Earth: Philosophy, Law and the Environment. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  30. Scherer, D. (2003). The ethics of sustainable resources. In A. Light & H. Rolston III (Eds.), Environmental Ethics (pp. 334–358). Oxford: Blackwell.Google Scholar
  31. Slabbert, N. L. (2010). Engineers as visionaries. Mechanical Engineering Magazine, 132(6), 24–26.Google Scholar
  32. Vesilind, P. A. (2002). Vestal virgins and engineering ethics. Ethics and the Environment, 7(1), 92–101.Google Scholar
  33. Voorthuis, J., & Gijbels, C. (2010). Cradle-to-cradle as a design theory measured against John Rawls’ theory of justice and Immanuel Kant’s categorical imperative. Sustainability, 2, 371–382.CrossRefGoogle Scholar
  34. Warnock, M. (2005). Ethics in time. In T. Aldrich (Ed.), About time: Speed Society People and the Environment (pp. 120–132). Sheffield: Greenleaf Publishing.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of PhilosophyMacalester CollegeSt. PaulUSA
  2. 2.School of EngineeringUniversity of PortlandPortlandUSA

Personalised recommendations