Science and Engineering Ethics

, Volume 19, Issue 1, pp 139–160 | Cite as

Predicting the Long-Term Effects of Human-Robot Interaction: A Reflection on Responsibility in Medical Robotics

Original Paper


This article addresses prospective and retrospective responsibility issues connected with medical robotics. It will be suggested that extant conceptual and legal frameworks are sufficient to address and properly settle most retrospective responsibility problems arising in connection with injuries caused by robot behaviours (which will be exemplified here by reference to harms occurred in surgical interventions supported by the Da Vinci robot, reported in the scientific literature and in the press). In addition, it will be pointed out that many prospective responsibility issues connected with medical robotics are nothing but well-known robotics engineering problems in disguise, which are routinely addressed by roboticists as part of their research and development activities: for this reason they do not raise particularly novel ethical issues. In contrast with this, it will be pointed out that novel and challenging prospective responsibility issues may emerge in connection with harmful events caused by normal robot behaviours. This point will be illustrated here in connection with the rehabilitation robot Lokomat.


Responsibility in medical robotics Robo-ethics Ethical issues concerning rehabilitation robotics Liability in robotic-assisted surgery Philosophy of science 



I am grateful to Guglielmo Tamburrini for stimulating discussions on the topics addressed here, and two anonymous referees for their valuable comments and criticisms on earlier versions of this paper.


  1. Andonian, S., Okeke, Z., Okeke, D. A., Rastinehad, A., Vanderbrink, B. A., Richstone, L., et al. (2008). Device failures associated with patient injuries during robot-assisted laparoscopic surgeries: A comprehensive review of FDA MAUDE database. The Canadian Journal of Urology, 15(1), 3912–3916.Google Scholar
  2. Barker, A. T. (1985). Non-invasive magnetic stimulation of human motor cortex. The Lancet, 325(8437), 1106–1107. doi: 10.1016/S0140-6736(85)92413-4.CrossRefGoogle Scholar
  3. Barker, A. T. (1999). The history and basic principles of magnetic nerve stimulation. Electroencephalography and Clinical Neurophysiology. Supplement, 51, 3–21.Google Scholar
  4. Borden, L. S., Kozlowski, P. M., Porter, C. R., & Corman, J. M. (2007). Mechanical failure rate of da Vinci robotic system. The Canadian Journal of Urology, 14(2), 3499–3501.Google Scholar
  5. Brink, G. (2002). Robotic surgery called a godsend. St. Petersburg Times. URL:
  6. Carreyrou, J. (2010a). Botched operation using Da Vinci robot spurs lawsuit. The Wall Street Journal. URL:
  7. Carreyrou, J. (2010b). Surgical robot examined in injuries. The Wall Street Journal. URL:
  8. Coleman, J., & Mendlow, G. (2003). Theories of tort law. In E. Zalta (Ed.), Stanford Encyclopedia of Philosophy (2003rd ed.). Stanford: Center for the Study of Language and Information, Stanford University.Google Scholar
  9. Colombo, G., Joerg, M., Schreier, R., & Dietz, V. (2000). Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, 37(6), 693–700.Google Scholar
  10. Datteri, E., Hosni, H., & Tamburrini, G. (2005). Machine learning from examples: A non-inductivist analysis. Logic & Philosophy of Science, 3(1), 1–31.Google Scholar
  11. Datteri, E., & Tamburrini, G. (2007). Biorobotic experiments for the discovery of biological mechanisms. Philosophy of Science, 74(3), 409–430Google Scholar
  12. Datteri, E., & Tamburrini, G. (2009). Ethical reflections on health care robotics. In R. Capurro & M. Nagenborg (Eds.), Ethics and Robotics (pp. 35–48). Amsterdam-Heidelberg: IOS Press/AKA.Google Scholar
  13. Eshleman, A. (2003). Moral responsibility. In E. Zalta (Ed.), Stanford Encyclopedia of Philosophy (2003rd ed.). Stanford: Center for the Study of Language and Information, Stanford University.Google Scholar
  14. Hidler, J., Nichols, D., Pelliccio, M., & Brady, K. (2005). Advances in the understanding and treatment of stroke impairment using robotic devices. Topics in Stroke Rehabilitation, 12(2), 22–35.CrossRefGoogle Scholar
  15. Hidler, J., Nichols, D., Pelliccio, M., Brady, K., Campbell, D. D., Kahn, J. H., et al. (2009). Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabilitation and Neural Repair, 23(1), 5–13. doi: 10.1177/1545968308326632.CrossRefGoogle Scholar
  16. Hidler, J. M., & Wall, A. E. (2005). Alterations in muscle activation patterns during robotic-assisted walking. Clinical Biomechanics, 20(2), 184–193. doi: 10.1016/j.clinbiomech.2004.09.016.Google Scholar
  17. Hornby, T. G., Campbell, D. D., Kahn, J. H., Demott, T., Moore, J. L., & Roth, H. R. (2008). Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke: A Journal of Cerebral Circulation, 39(6), 1786–1792. doi: 10.1161/STROKEAHA.107.504779.CrossRefGoogle Scholar
  18. Koliakos, N., Denaeyer, G., Willemsen, P., Schatteman, P., & Mottrie, A. (2008). Failure of a robotic arm during da Vinci prostatectomy: a case report. Journal of Robotic Surgery, 2(2), 95–96. doi: 10.1007/s11701-008-0080-z (Springer, London).Google Scholar
  19. Koski, L., Mernar, T. J., & Dobkin, B. H. (2004). Immediate and long-term changes in corticomotor output in response to rehabilitation: correlation with functional improvements in chronic stroke. Neurorehabilitation and Neural Repair, 18(4), 230–249. doi: 10.1177/1545968304269210.CrossRefGoogle Scholar
  20. Lerner, M. A., Ayalew, M., Peine, W. J., & Sundaram, C. P. (2010). Does training on a virtual reality robotic simulator improve performance on the Da Vinci surgical system? Journal of Endourology/Endourological Society, 24(3), 467–472. doi: 10.1089/end.2009.0190.CrossRefGoogle Scholar
  21. Marchal-Crespo, L., & Reinkensmeyer, D. J. (2009). Review of control strategies for robotic movement training after neurologic injury. Journal of Neuroengineering and Rehabilitation, 6, 20. doi: 10.1186/1743-0003-6-20.CrossRefGoogle Scholar
  22. Mudry, P.-A., Degallier, S., & Billard, A. (2008). On the influence of symbols and myths in the responsibility ascription problem in roboethics—A roboticist’s perspective. In Proceedings of RO-MAN 2008The 17th IEEE International Symposium on Robot and Human Interactive Communication (pp. 563–568). IEEE. doi: 10.1109/ROMAN.2008.4600726.
  23. Park, S. Y., Ahn, J. J.-K., Jeong, W., Ham, W. S., & Rha, K. H. (2010). A unique instrumental malfunction during robotic prostatectomy. Yonsei Medical Journal, 51(1), 148–150. doi: 10.3349/ymj.2010.51.1.148.CrossRefGoogle Scholar
  24. Prassler, E., & Kosuge, K. (2008). Domestic robotics. In B. Siciliano & O. Khatib (Eds.), Springer Handbook of Robotics (pp. 1253–1282). New York: Springer.CrossRefGoogle Scholar
  25. Regnaux, J.-P., Saremi, K., Marehbian, J., Bussel, B., & Dobkin, B. H. (2008). An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait. Neurorehabilitation and Neural Repair, 22(4), 348–354. doi: 10.1177/1545968307310050.CrossRefGoogle Scholar
  26. Salvini, P., Datteri, E., Laschi, C., & Dario, P. (2007). Scientific models and ethical issues in hybrid bionic systems research. AI & Society, 22(3), 431–448. doi: 10.1007/s00146-007-0158-6 (Springer, London).
  27. Santoro, M., Marino, D., & Tamburrini, G. (2007). Learning robots interacting with humans: From epistemic risk to responsibility. Ai & Society, 22(3), 301–314. doi: 10.1007/s00146-007-0155-9.CrossRefGoogle Scholar
  28. Shepherd, R. B. (2001). Exercise and training to optimize functional motor performance in stroke: Driving neural reorganization? Neural Plasticity, 8(1–2), 121–129. doi: 10.1155/NP.2001.121.CrossRefGoogle Scholar
  29. Sinkaer, T., & Popović, D. B. (2009). Neurorehabilitation technologies—Present and future possibilities. Introduction. NeuroRehabilitation, 25(1), 1–3. doi: 10.3233/NRE-2009-0494.
  30. Swinnen, E., Duerinck, S., Baeyens, J.-P., Meeusen, R., & Kerckhofs, E. (2010). Effectiveness of robot-assisted gait training in persons with spinal cord injury: A systematic review. Journal of Rehabilitation Medicine, 42(6), 520–526. doi: 10.2340/16501977-0538.CrossRefGoogle Scholar
  31. Tamburrini, G. (2009). Robot ethics: A view from the philosophy of science. In R. Capurro & M. Nagemborg (Eds.), Ethics and Robotics (pp. 11–22). Amsterdam-Heidelberg: IOS Press/AKA.Google Scholar
  32. Tamburrini, G., & Datteri, E. (2005). Machine experiments and theoretical modelling: From cybernetic methodology to neuro-robotics. Minds and Machines, 15(3–4), 335–358. doi: 10.1007/s11023-005-2924-x.CrossRefGoogle Scholar
  33. Taylor, R. H., Menciassi, A., Fichtinger, G., & Dario, P. (2008). Medical robotics and computer-integrated surgery. In B. Siciliano & O. Khatib (Eds.), Springer Handbook of Robotics (pp. 1199–1222). Springer, New York. doi: 10.1007/978-3-540-30301-5_53.
  34. Van Der Loos, H. F. M., & Reinkensmeyer, D. J. (2008). Rehabilitation and health care robotics. In B. Siciliano & O. Khatib (Eds.), Springer Handbook of Robotics (pp. 1223–1251). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-540-30301-5.
  35. Wasen, K. (2010). Replacement of highly educated surgical assistants by robot technology in working life: Paradigm shift in the service sector. International Journal of Social Robotics, 2(4), 431–438. doi: 10.1007/s12369-010-0062-y.CrossRefGoogle Scholar
  36. Woodward, J. (2003). Making Things Happen: A Theory of Causal Explanation. USA: Oxford University Press.Google Scholar
  37. Zorn, K. C., Gofrit, O. N., Orvieto, M. A., Mikhail, A. A., Galocy, R. M., Shalhav, A. L., et al. (2007). Da Vinci robot error and failure rates: single institution experience on a single three-arm robot unit of more than 700 consecutive robot-assisted laparoscopic radical prostatectomies. Journal of Endourology/Endourological Society, 21(11), 1341–1344. doi: 10.1089/end.2006.0455.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Dipartimento di Scienze Umane per la Formazione “R. Massa”Università degli Studi di Milano-BicoccaMilanItaly

Personalised recommendations