Science and Engineering Ethics

, Volume 18, Issue 2, pp 393–410 | Cite as

Climate Change: Evidence of Human Causes and Arguments for Emissions Reduction

  • Seth D. Baum
  • Jacob D. Haqq-Misra
  • Chris Karmosky
Comment

Abstract

In a recent editorial, Raymond Spier expresses skepticism over claims that climate change is driven by human actions and that humanity should act to avoid climate change. This paper responds to this skepticism as part of a broader review of the science and ethics of climate change. While much remains uncertain about the climate, research indicates that observed temperature increases are human-driven. Although opinions vary regarding what should be done, prominent arguments against action are based on dubious factual and ethical positions. Thus, the skepticisms in the recent editorial are unwarranted. This does not diminish the general merits of skeptical intellectual inquiry.

Keywords

Climate change Skepticism Transdisciplinarity Uncertainty Economics 

References

  1. Ackerman, F. (2008). Hot, it’s not: Reflections on cool it, by Bjorn Lomborg. Climatic Change, 89(3–4), 435–446.CrossRefGoogle Scholar
  2. Adger, W. N. (2004). The right to keep cold. Environment and Planning A, 36, 1711–1715.CrossRefGoogle Scholar
  3. Adger, N. W., Paavola, J., Huq, S., & Mace, M. J. (Eds.). (2006). Fairness in adaptation to climate change. Cambridge, MA: MIT Press.Google Scholar
  4. Alley, R. B. (2002). The two-mile time machine: Ice cores. abrupt climate change, and our future. Princeton, NJ: Princeton University Press.Google Scholar
  5. Archer, D. (2005). The fate of fossil fuel CO2 in geologic time. Journal of Geophysical Research. doi:10.1029/2004JC002625.
  6. Arrhenius, S. (1896). On the influence of carbonic acid in the air upon the temperature of the ground. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(251), 237–276.Google Scholar
  7. Arrow, K. J., Cline, W., Maler, K. G., Munasinghe, M., Squitieri, R., & Stiglitz, J. (1996). Intertemporal equity, discounting and economic efficiency. In J. Bruce, H. Lee, & E. Haites (Eds.), Climate change 1995—Economic and social dimensions of climate change (pp. 125–144). Cambridge, UK: Cambridge University Press.Google Scholar
  8. Ascher, W. L. (2004). Scientific information and uncertainty: Challenges for the use of science in policymaking. Science and Engineering Ethics, 10(3), 437–455.CrossRefGoogle Scholar
  9. Baum, S. (2007). Beyond the Ramsey model for climate change assessments. Ethics in Science and Environmental Politics, 2007, 15–21.Google Scholar
  10. Bostrom, N. (2003). Astronomical waste: The opportunity cost of delayed technological development. Utilitas, 15, 308–314.CrossRefGoogle Scholar
  11. Bostrom, N., & Ćirković, M. (Eds.). (2008). Global catastrophic risks. Oxford: Oxford University Press.Google Scholar
  12. Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., & Jones, P. D. (2006). Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. Journal of Geophysical Research, 111, D12106. doi:10.1029/2005JD006548.CrossRefGoogle Scholar
  13. Broome, J. (1992). Counting the cost of global warming. Cambridge, UK: The White Horse Press.Google Scholar
  14. Brown, D. A. (2003). The importance of expressly examining global warming policy issues through an ethical prism. Global Environmental Change, 13, 229–234.CrossRefGoogle Scholar
  15. Brown, D., Tuana, N., Averill, M., Baer, P., Born, R., & Brandão, C. E. L., et al. (2004). White paper on the ethical dimensions of climate change. http://www.rockethics.psu.edu/climate/whitepaper/whitepaper-intro.shtml. Accessed 7 April 2011.
  16. Caney, S. (2008). Human rights, climate change, and discounting. Environmental Politics, 17(4), 536–555.CrossRefGoogle Scholar
  17. Carslaw, K. S., Harrison, R. G., & Kirkby, J. (2002). Cosmic rays, clouds, and climate. Science, 298(5599), 1732–1737.CrossRefGoogle Scholar
  18. Church, J. A., Gregory, J. M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M. T., et al. (2001). Changes in sea level. In J. T. Houghton, et al. (Eds.), Climate change 2001: The scientific basis (pp. 639–694). Cambridge, UK: Cambridge University Press.Google Scholar
  19. Clark, P. U., Alley, R. B., & Pollard, D. (1999). Northern hemisphere ice-sheet influences on global climate change. Science, 286, 1104–1111.CrossRefGoogle Scholar
  20. Committee on Facilitating Interdisciplinary Research. (2004). Facilitating Interdisciplinary Research. Washington, DC: National Academies Press.Google Scholar
  21. Conway, H., Hall, B. L., Denton, G. H., Gades, A. M., & Waddington, E. D. (1999). Past and future grounding-line retreat of the West Antarctic ice sheet. Science, 286, 280–283.CrossRefGoogle Scholar
  22. Danish Ecological Council. (2002). Sceptical questions and sustainable answers. Copenhagen: Danish Ecological Council.Google Scholar
  23. Coward, H., & Hurka, T. (1993). Ethics and climate change: The greenhouse effect. Waterloo, ON: Wilfrid Laurier University Press.Google Scholar
  24. Crutzen, P. J. (2006). Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, 77, 211–220.CrossRefGoogle Scholar
  25. Dasgupta, P. (2007). A challenge to Kyoto. Nature, 449, 143–144.CrossRefGoogle Scholar
  26. Demeritt, D. (2001). The construction of global warming and the politics of science. Annals of the Association of American Geographers, 9, 307–337.CrossRefGoogle Scholar
  27. Durkin, M. (2007). The great global warming swindle. Channel 4 (U.K.). http://www.greatglobalwarmingswindle.co.uk. Accessed 7 April 2011.
  28. Early, J. T. (1989). Space-based solar shield to offset greenhouse effect. Journal of the British Interplanetary Society, 42, 567–569.Google Scholar
  29. Gardiner, S. M. (2004). Ethics and global climate change. Ethics, 114, 555–600.CrossRefGoogle Scholar
  30. Gore, A. (2006). An inconvenient truth: The planetary emergency of global warming and what we can do about it. New York: Rodale Books.Google Scholar
  31. Grenci, L. M., & Nese, J. M. (2006). A world of weather: Fundamentals of meteorology. Dubuque, IA: Kendall/Hunt.Google Scholar
  32. Gundermann, J. (2002). Discourse in the greenhouse. In Danish Ecological Council (Ed.), Sceptical questions and sustainable answers (pp. 139–164). Copenhagen: Danish Ecological Council.Google Scholar
  33. Hansen, J., Ruedy, R., Sato, M., Imhoff, M., Lawrence, W., Easterling, D., et al. (2001). A closer look at United States and global surface temperature change. Journal of Geophysical Research, 106, 23947–23963.CrossRefGoogle Scholar
  34. Harvey, L. D. D., & Kaufmann, R. K. (2002). Simultaneously constraining climate sensitivity and aerosol radiative forcing. Journal of Climate, 15, 2837–2861.CrossRefGoogle Scholar
  35. Howarth, R. B. (2006). Optimal environmental taxes under relative consumption effects. Ecological Economics, 58, 209–219.CrossRefGoogle Scholar
  36. Jamieson, D. (1992). Ethics, public policy, and global warming. Science, Technology, & Human Values, 17(2), 139–153.CrossRefGoogle Scholar
  37. Keith, D. W. (2000). Geoengineering the climate: History and prospect. Annual Review of Energy and the Environment, 25, 245–284.CrossRefGoogle Scholar
  38. Kerr, R. A. (2007). Pushing the scary side of global warming. Science, 316, 1412–1415.CrossRefGoogle Scholar
  39. King, J. C., Turner, J., Marshall, G. J., Connolley, W. M., & Lachlan-Cope, T. A. (2002). Antarctic Peninsula climate variability and its causes as revealed by analysis of instrumental records. British Antarctic Survey, Natural Environment Research Council.Google Scholar
  40. Klinsky, S., & Dowlatabadi, H. (2009). Conceptualizations of justice in climate policy. Climate Policy, 9(1), 88–108.CrossRefGoogle Scholar
  41. Knutti, R., & Hegerl, G. (2008). The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nature Geosciences. doi:10.1038/ngeo337.
  42. Kristjansson, J. E., Kristiansen, J., & Kaas, E. (2004). Solar activity, cosmic rays, clouds and climate—An update. Advances in Space Research, 34, 407–415.CrossRefGoogle Scholar
  43. Kristjansson, J. E., Staple, A., Kristiansen, J., & Kaas, E. (2002). A new look at possible connections between solar activity, clouds and climate. Geophysical Research Letters, 29, 2107–2110.CrossRefGoogle Scholar
  44. Lawrence, R. J., & Després, C. (2004). Futures of transdisciplinarity. Futures, 36, 397–405.CrossRefGoogle Scholar
  45. Leiserowitz, A. (2006). Climate change risk perception and policy preferences: The role of affect, imagery, and values. Climatic Change, 77(1–2), 45–72.CrossRefGoogle Scholar
  46. Lomborg, B. (2001). The skeptical environmentalist: Measuring the real state of the world. Cambridge, UK: Cambridge University Press.Google Scholar
  47. Lomborg, B. (2007). Cool it: The skeptical environmentalist’s guide to global warming. New York: Knopf.Google Scholar
  48. Lu, J., Vecchi, G. A., & Reichler, T. (2007). Expansion of the Hadley cell under global warming. Geophysical Research Letters, 34, L06805. doi:10.1029/2006GL028443.CrossRefGoogle Scholar
  49. Lugina, K. M., Groisman, P. Y., Vinnikov, K. Y., Koknaeva, V. V., & Speranskaya, N. A. (2005). Monthly surface air temperature time series area-averaged over the 30-degree latitudinal belts of the globe. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy. http://www.cdiac.esd.ornl.gov/trends/temp/lugina/lugina.html. Accessed 7 April 2011.
  50. Marsh, N., & Svensmark, H. (2000a). Cosmic rays, clouds, and climate. Space Science Reviews, 94, 215–230.CrossRefGoogle Scholar
  51. Marsh, N. D., & Svensmark, H. (2000b). Low cloud properties influenced by cosmic rays. Physical Review Letters, 85, 5004–5007.CrossRefGoogle Scholar
  52. Martin, J. H. (1990). Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography, 5, 1–13.CrossRefGoogle Scholar
  53. Matheny, J. G. (2007). Reducing the risk of human extinction. Risk Analysis, 27(5), 1335–1344.CrossRefGoogle Scholar
  54. McInerney, D., & Keller, K. (2007). Economically optimal risk reduction strategies in the face of uncertain climate thresholds. Climatic Change. doi:10.1007/s10584-006-9137-z.
  55. McKibben, B. (2007). Can anyone stop it? New York Review of Books, 54(15), 11.Google Scholar
  56. McKie, D., & Galloway, C. (2007). Climate change after denial: Global reach, global responsibilities, and public relations. Public Relations Review, 33, 368–376.CrossRefGoogle Scholar
  57. Merryfield, W. J. (2006). Changes to ENSO under CO2 Doubling in a Multimodel Ensemble. Journal of Climate, 19, 4009–4027.CrossRefGoogle Scholar
  58. Morgan, M. G., Kandlikar, M., Risbey, J., & Dowlatabadi, H. (1999). Why conventional tools for policy analysis are often inadequate for problems of global change. Climatic Change, 41, 271–281.CrossRefGoogle Scholar
  59. Morton, O. (2007). Is this what it takes to save the world? Nature, 447, 132–136.CrossRefGoogle Scholar
  60. Moss, R. H., & Schneider, S. H. (2000). Uncertainties in the IPCC TAR: Recommendations to lead authors for more consistent assessment and reporting. In R. Pachauri, T. Taniguchi, & K. Tanaka (Eds.), Guidance papers on the cross cutting issues of the Third Assessment Report of the IPCC (pp. 33–51). Geneva: World Meteorological Organization.Google Scholar
  61. Neumayer, E. (2000). In defence of historical accountability for greenhouse gas emissions. Ecological Economics, 33, 185–192.CrossRefGoogle Scholar
  62. Nobel Foundation (2007). The Nobel Peace Prize 2007. http://www.nobelprize.org/nobel_prizes/peace/laureates/2007. Accessed 15 Oct 2008.
  63. Nordhaus, W. (1992). An optimal transition path for controlling greenhouse gases. Science, 258(5086), 1315–1319.CrossRefGoogle Scholar
  64. Nordhaus, W. D. (2007). To tax or not to tax: Alternative approaches to slowing global warming. Review of Environmental Economics and Policy, 1(1), 26–44.CrossRefGoogle Scholar
  65. Nordhaus, W. D. (2008). A question of balance: Weighing the options on global warming policies. New Haven, CT: Yale University Press.Google Scholar
  66. Overpeck, J. T., Otto-Bliesner, B. L., Miller, G. H., Muhs, D. R., Alley, R. B., & Kiehl, J. T. (2006). Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science, 311, 1747–1750.CrossRefGoogle Scholar
  67. Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., et al. (1999). Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica. Nature, 399, 429–436.CrossRefGoogle Scholar
  68. Pittock, A. B. (2002). What we know and don’t know about climate change: Reflections on the IPCC TAR. Climatic Change, 53(4), 393–411.CrossRefGoogle Scholar
  69. Pollard, D., & DeConto, R. M. (2009). Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458, 329–332.CrossRefGoogle Scholar
  70. Posner, R. (2004). Catastrophe: Risk and response. Oxford: Oxford University Press.Google Scholar
  71. Ramaswamy, V., Chanin, M. L., Angell, J., Barnett, J., Gaffen, D., Gelman, M., et al. (2001). Stratospheric temperature trends: Observations and model simulations. Reviews of Geophysics, 39, 71–122.CrossRefGoogle Scholar
  72. Ravetz, J. R. (1999). What is post-normal science. Futures, 31, 647–653.CrossRefGoogle Scholar
  73. Rignot, E., & Kanagaratnam, P. (2006). Changes in the velocity structure of the Greenland ice sheet. Science, 311, 986–990.CrossRefGoogle Scholar
  74. Rignot, E., Vaughan, D. G., Schmeltz, M., Dupont, T., & MacAyeal, D. (2002). Acceleration of Pine Island and Thwaites glaciers. Annals of Glaciology, 34(1), 189–194.CrossRefGoogle Scholar
  75. Robock, A. (2008). 20 reasons why geoengineering may be a bad idea. Bulletin of the Atomic Scientists, 64(2), 14–18, 59.Google Scholar
  76. Saundry, P., & Vranes, K. (2008). Intergovernmental Panel on Climate Change (IPCC). In: J. C. Cleveland (Ed.), Encyclopedia of Earth. http://www.eoearth.org/article/Intergovernmental_Panel_on_Climate_Change_(IPCC). Accessed 7 April 2011.
  77. Scambos, T. A., Bohlander, J. A., Shuman, C. A., & Skvarca, P. (2004). Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophysical Research Letters, 31, L18402.CrossRefGoogle Scholar
  78. Schelling, T. (2000). Intergenerational and international discounting. Risk Analysis, 20(6), 833–837.CrossRefGoogle Scholar
  79. Schneider, S. H. (2001). A constructive deconstruction of deconstructionists: A response to Demeritt. Annals of the Association of American Geographers, 91(2), 338–344.CrossRefGoogle Scholar
  80. Schneider, S. H. (2006). Climate change: Do we know enough for policy action? Science and Engineering Ethics, 12, 607–636.CrossRefGoogle Scholar
  81. Schneider, S. H. (2008). Geoengineering: Could we or should we make it work? Philosophical Transactions of the Royal Society A, 366(1882), 3843–3862.CrossRefGoogle Scholar
  82. Seidel, D. J., Fu, Q., Randel, W. J., & Reichler, T. S. J. (2008). Widening of the tropical belt in a changing climate. Nature Geoscience, 1, 21–24.Google Scholar
  83. Seifritz, W. (1989). Mirrors to halt global warming? Nature, 340, 603.CrossRefGoogle Scholar
  84. Shaw, A., & Robinson, J. (2004). Relevant but not prescriptive? Science policy models within the IPCC. Philosophy Today, 48, 84–95.Google Scholar
  85. Shepherd, A., & Wingham, D. (2007). Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science, 315, 1529–1532.CrossRefGoogle Scholar
  86. Smetacek, V., & Naqvi, S. W. A. (2008). The next generation of iron fertilization experiments in the Southern Ocean. Philosophical Transactions of the Royal Society A, 366, 3947–3967.CrossRefGoogle Scholar
  87. Smith, T. M., & Reynolds, R. W. (2005). A global merged land–air–sea surface temperature reconstruction based on historical observations (1880–1997). Journal of Climate, 18, 2021–2036.CrossRefGoogle Scholar
  88. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., & Averyt, K. B. (Eds.). (2007). Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
  89. Spier, R. E. (2008). Climate—An item for the ethics agenda. Science and Engineering Ethics, 14(1), 1–2.CrossRefGoogle Scholar
  90. Stern, D. I. (2005). Global sulfur emissions from 1850 to 2000. Chemosphere, 58, 163–175.CrossRefGoogle Scholar
  91. Stern, N. (2007). The economics of climate change: The Stern review. Cambridge, UK: Cambridge University Press.Google Scholar
  92. Stern, N. (2008). The economics of climate change. American Economic Review, 98, 2–37.CrossRefGoogle Scholar
  93. Stott, P. A., Mitchell, J. F. B., Allen, M. R., Delworth, T. L., Gregory, J. M., Meehl, G. A., et al. (2006). Observational constraints on past attributable warming and predictions of future global warming. Journal of Climate, 19, 3055–3069.CrossRefGoogle Scholar
  94. Sullivan, G. R., Bowman, F., Farrell, L. P., Gaffney, P. G., Kern, P. J., Lopez, T. J., et al. (2007). National security and climate change. Alexandria, VA: The CNA Corporation.Google Scholar
  95. Sun, B., & Bradley, R. S. (2002). Solar influences on cosmic rays and cloud formation: A reassessment. Journal of Geophysical Research, 107, D14205. doi:10.1029/2003JD004063.Google Scholar
  96. Sunstein, C. R., & Rowell, A. (2007). On discounting regulatory benefits: Risk, money, and intergenerational equity. University of Chicago Law Review, 74(1), 171–208.Google Scholar
  97. Timmermann, A., Oberhuber, J., Bacher, A., Esch, M., Latif, M., & Roeckner, E. (1999). Increased El Nino frequency in a climate model forced by future greenhouse warming. Nature, 398, 694–697.CrossRefGoogle Scholar
  98. Tol, R. S. J. (2008). The social cost of carbon: Trends, outliers and catastrophes. Economics, 2, 2008–2025.Google Scholar
  99. Tol, R. S. J., & Yohe, G. W. (2007). Infinite uncertainty, forgotten feedbacks, and cost-benefit analysis of climate policy. Climatic Change, 83, 429–442.CrossRefGoogle Scholar
  100. Tonn, B. E. (2002). Distant futures and the environment. Futures, 34, 117–132.CrossRefGoogle Scholar
  101. Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Carleton, A. M., Jones, P. D., et al. (2005). Antarctic climate change during the last 50 years. International Journal of Climatology, 25, 279–294.CrossRefGoogle Scholar
  102. UNDP (2007). Human Development Report 2007/2008: Fighting climate change: Human solidarity in a divided world. New York: United Nations Development Programme.Google Scholar
  103. Washington Times (2007). Global warming labeled a ‘scam’. March 6. http://www.washtimes.com/news/2007/mar/06/20070306-122226-6282r. Accessed 7 April 2011.
  104. Weitzman, M. L. (2009). Structural uncertainty and the value of statistical life in the economics of catastrophic climate change. Review of Economics and Statistics, 91(1), 1–19.CrossRefGoogle Scholar
  105. Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., & Steffen, K. (2002). Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297(5579), 218–222.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Seth D. Baum
    • 1
    • 2
  • Jacob D. Haqq-Misra
    • 3
  • Chris Karmosky
    • 1
  1. 1.Department of GeographyPennsylvania State UniversityUniversity ParkUSA
  2. 2.Center for Research on Environmental DecisionsColumbia UniversityNew YorkUSA
  3. 3.Department of Meteorology and Astrobiology Research CenterPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations