Science and Engineering Ethics

, Volume 18, Issue 4, pp 757–774 | Cite as

The Conception of Life in Synthetic Biology



The phrase ‘synthetic biology’ is used to describe a set of different scientific and technological disciplines, which share the objective to design and produce new life forms. This essay addresses the following questions: What conception of life stands behind this ambitious objective? In what relation does this conception of life stand to that of traditional biology and biotechnology? And, could such a conception of life raise ethical concerns? Three different observations that provide useful indications for the conception of life in synthetic biology will be discussed in detail: 1. Synthetic biologists focus on different features of living organisms in order to design new life forms, 2. Synthetic biologists want to contribute to the understanding of life, and 3. Synthetic biologists want to modify life through a rational design, which implies the notions of utilising, minimising/optimising, varying and overcoming life. These observations indicate a tight connection between science and technology, a focus on selected aspects of life, a production-oriented approach to life, and a design-oriented understanding of life. It will be argued that through this conception of life synthetic biologists present life in a different light. This conception of life will be illustrated by the metaphor of a toolbox. According to the notion of life as a toolbox, the different features of living organisms are perceived as various rationally designed instruments that can be used for the production of the living organism itself or secondary products made by the organism. According to certain ethical positions this conception of life might raise ethical concerns related to the status of the organism, the motives of the scientists and the role of technology in our society.


Biotechnology Conception of life Designing life Living machine Synthetic biology 



I would like to thank Christoph Rehmann-Sutter, Agomoni Ganguli-Mitra and Lothar Deplazes for helpful comments on this article. Moreover, I thank the members of the workshop “The Definition of Life in Times of its Technical Producibility: Ethical, Legal and Social Challenges of Synthetic Biology” that has been organised by Peter Dabrock and collaborators, for their suggestions, and three anonymous reviewers for their comments on an earlier version of the manuscript. This work was supported by the URPP (University Research Priority Programme) Ethics of the University of Zurich and by a grant from the European Commission’s 7th framework programme in the category “Science in Society” for the project “SYBHEL: Synthetic Biology for Human Health: Ethical and Legal Issues”.


  1. Andrianantoandro, E., Basu, S., Karig, D. K., & Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems Biology, 2, 1–14. doi: 10.1038/msb4100073.CrossRefGoogle Scholar
  2. Anonymous (2006). Life 2.0. The Economist, August, 67–69.Google Scholar
  3. Attfield, R. (1998). Intrinsic value and transgenic animals. In A. Holland & A. Johnson (Eds.), Animal biotechnology and ethics (pp. 172–189). London: Chapman & Hall.CrossRefGoogle Scholar
  4. Baker, D., Church, G., Collins, J., Endy, D., Jacobson, J., Keasling, J., et al. (2006). Engineering life: Building a FAB for biology (pp. 44–51). USA: Scientific American.Google Scholar
  5. Benner, S. A. (2004). Understanding nucleic acids using synthetic chemistry. Accounts of Chemical Research, 37(10), 784–797. doi: 10.1021/ar040004z.CrossRefGoogle Scholar
  6. Benner, S. A., & Sismour, A. M. (2005). Synthetic biology. Nature Reviews Genetics, 6(7), 533–543. doi: 10.1038/nrg1637.CrossRefGoogle Scholar
  7. Bergstrom, D. E. (2009). Unnatural nucleosides with unusual base pairing properties. Curr Protoc Nucleic Acid Chem, Chapter 1, Unit 1 4, doi: 10.1002/0471142700.nc0104s37.
  8. Bitbol, M., & Luisi, P. L. (2004). Autopoiesis with or without cognition: defining life at its edge. Journal of the Royal Society Interface, 1(1), 99–107. doi: 10.1098/rsif.2004.0012.CrossRefGoogle Scholar
  9. Boldt, J., & Muller, O. (2008). Newtons of the leaves of grass. Nature Biotechnology, 26(4), 387–389. doi: 10.1038/nbt0408-387.CrossRefGoogle Scholar
  10. Boldt, J., Müller, O., & Maio, G. (2009). Synthetische Biologie Eine ethisch-philosophische Analyse. Bern: BBL (Bundesamt für Bauten und Logistik).Google Scholar
  11. Carr, P. A., & Church, G. M. (2009). Genome engineering. Nature Biotechnology, 27(12), 1151–1162. doi: 10.1038/nbt.1590.CrossRefGoogle Scholar
  12. Cho, M. K., Magnus, D., Caplan, A. L., & McGee, D. (1999). Policy forum: genetics. Ethical considerations in synthesizing a minimal genome. Science, 286(5447), 2087, 2089–2090.Google Scholar
  13. Deamer, D. (2010). Special collection of essays: What is life? Introduction. Astrobiology, 10(10), 1001–1002. doi: 10.1089/ast.2010.0569.CrossRefGoogle Scholar
  14. Deplazes, A. (2009). Piecing together a puzzle. An exposition of synthetic biology. EMBO Reports, 10(5), 428–432. doi: 10.1038/embor.2009.76.CrossRefGoogle Scholar
  15. Deplazes, A., & Huppenbauer, M. (2009). Synthetic organisms and living machines: Positioning the products of synthetic biology at the borderline between living and non-living matter. Systems and Synthetic Biology, 3(1–4), 55–63. doi: 10.1007/s11693-009-9029-4.CrossRefGoogle Scholar
  16. Descartes, R. (1985–1988). Discourse on the method. In Cottingham J., Soothoff R., & Murdoch D. (Eds.), The philosophical writings of descartes 3 vol (Vol. 1, pp. 109–177). Cambridge: Cambridge University Press.Google Scholar
  17. Dougherty, M. J., & Arnold, F. H. (2009). Directed evolution: New parts and optimized function. Current Opinion in Biotechnology, 20(4), 486–491. doi: 10.1016/j.copbio.2009.08.005.CrossRefGoogle Scholar
  18. Drubin, D. A., Way, J. C., & Silver, P. A. (2007). Designing biological systems. Genes and Development, 21(3), 242–254. doi: 10.1101/gad.1507207.CrossRefGoogle Scholar
  19. Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067), 449–453. doi: 10.1038/nature04342.CrossRefGoogle Scholar
  20. Ganti, T. (2003). The principles of life. Oxford: Oxford University Press.CrossRefGoogle Scholar
  21. Glass, J. I., Assad-Garcia, N., Alperovich, N., Yooseph, S., Lewis, M. R., Maruf, M., et al. (2006). Essential genes of a minimal bacterium. Proceedings of the National Academy of Sciences of the USA, 103(2), 425–430. doi: 10.1073/pnas.0510013103.CrossRefGoogle Scholar
  22. Heidegger, M. (1977). The question concerning technology and other essays (W. Lovitt, Trans.). New York: Harper Torchbooks.Google Scholar
  23. Heinemann, M., & Panke, S. (2006). Synthetic biology-putting engineering into biology. Bioinformatics, 22(22), 2790–2799. doi: 10.1093/bioinformatics/btl469.CrossRefGoogle Scholar
  24. Hold, C., & Panke, S. (2009). Towards the engineering of in vitro systems. Journal of the Royal Society Interface, 6, 507–521. doi: 10.1098/rsif.2009.0110.focus.CrossRefGoogle Scholar
  25. Holt, R. A. (2008). Synthetic genomes brought closer to life. Nature Biotechnology, 26(3), 296–297. doi: 10.1038/nbt0308-296.CrossRefGoogle Scholar
  26. Hursthouse, R. (2007). Virtue Ethics. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. Stanford: Stanford University,
  27. Jonas, H. (1985). The imperative of responsibility in search of an ethics for the technological age. Chicago (Ill.): The University of Chicago Press.Google Scholar
  28. Koshland, D. E., Jr. (2002). Special essay. The seven pillars of life. Science, 295(5563), 2215–2216. doi: 10.1126/science.1068489.CrossRefGoogle Scholar
  29. Kull, K., Deacon, T., Emmeche, C., Hoffmeyer, J., & Frederik, S. (2009). Theses on biosemiotics: Prolegomena to a theoretical biology. Biological Theory, 4(2), 167–173.CrossRefGoogle Scholar
  30. La Mettrie, J. O. (1996). Machine man. In A. Thomsom (Ed.), Machine man and other writings (pp. 1–41). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  31. Luisi, P. L. (2002). Toward the engineering of minimal living cells. Anatomical Record, 268(3), 208–214. doi: 10.1002/ar.10155.CrossRefGoogle Scholar
  32. Luisi, P. L. (2003). Autopoiesis: A review and a reappraisal. Naturwissenschaften, 90(2), 49–59. doi: 10.1007/s00114-002-0389-9.Google Scholar
  33. Luisi, P. L. (2006). The emergence of life, from chemical origins to synthetic biology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  34. Martin, C. H., Nielsen, D. R., Solomon, K. V., & Prather, K. L. (2009). Synthetic metabolism: Engineering biology at the protein and pathway scales. Chemistry and Biology, 16(3), 277–286. doi: 10.1016/j.chembiol.2009.01.010.CrossRefGoogle Scholar
  35. Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition: The realization of the living. Dordrecht: D. Reidel Publishing Company.CrossRefGoogle Scholar
  36. Mayr, E. (1997). This is biology: The science of the living world. Cambridge: Harward University Press.Google Scholar
  37. Morange, M. (2009). A new revolution? The place of systems biology and synthetic biology in the history of biology. EMBO Reports, 10(Suppl 1), S50–S53. doi: 10.1038/embor.2009.156.CrossRefGoogle Scholar
  38. Moya, A., Krasnogor, N., Pereto, J., & Latorre, A. (2009). Goethe’s dream. Challenges and opportunities for synthetic biology. EMBO Reports, 10, 28–32. doi: 10.1038/embor.2009.120.CrossRefGoogle Scholar
  39. Neumann, H., Wang, K., Davis, L., Garcia-Alai, M., & Chin, J. W. (2010). Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature, 464(7287), 441–444. doi: 10.1038/nature08817.CrossRefGoogle Scholar
  40. O’Malley, M. A., Powell, A., Davies, J. F., & Calvert, J. (2008). Knowledge-making distinctions in synthetic biology. Bioessays, 30(1), 57–65. doi: 10.1002/bies.20664.CrossRefGoogle Scholar
  41. Purnick, P. E., & Weiss, R. (2009). The second wave of synthetic biology: from modules to systems. Nature Reviews Molecular Cell Biology, 10(6), 410–422. doi: 10.1038/nrm2698.CrossRefGoogle Scholar
  42. Riskin, J. (2003). The defecating duck, or, the ambiguous origins of artificial life. Critical Inquiry, 29(4), 599–633.CrossRefGoogle Scholar
  43. Schmidt, M. (2010). Xenobiology: A new form of life as the ultimate biosafety tool. Bioessays, 32(4), 322–331. doi: 10.1002/bies.200900147.CrossRefGoogle Scholar
  44. Schulze-Makuch, D., & Irwin, L. N. (2006). The prospect of alien life in exotic forms on other worlds. Naturwissenschaften, 93(4), 155–172. doi: 10.1007/s00114-005-0078-6.CrossRefGoogle Scholar
  45. Simpson, M. L. (2006). Cell-free synthetic biology: A bottom-up approach to discovery by design. Molecular Systems Biology, 2, 69. doi: 10.1038/msb4100104.CrossRefGoogle Scholar
  46. Stano, P., & Luisi, P. L. (2010). Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chemical Communications (Camb), 46(21), 3639–3653. doi: 10.1039/b913997d.CrossRefGoogle Scholar
  47. Szathmary, E. (2003). Why are there four letters in the genetic alphabet? Nature Reviews Genetics, 4(12), 995–1001. doi: 10.1038/nrg1231.CrossRefGoogle Scholar
  48. Taylor, P. W. (1986). Respect for nature a theory of environmental ethics. Princeton (NJ): Princeton University Press.Google Scholar
  49. Vriend, H.d. (2006). Constructing life early social reflections on the emerging field of synthetic biology. De Hague, Netherlands: Rathenau Institute.Google Scholar
  50. Wang, L., Xie, J., & Schultz, P. G. (2006). Expanding the genetic code. Annual Review of Biophysics and Biomolecular Structure, 35, 225–249. doi: 10.1146/annurev.biophys.35.101105.121507.CrossRefGoogle Scholar
  51. Wimmer, E., Mueller, S., Tumpey, T. M., & Taubenberger, J. K. (2009). Synthetic viruses: a new opportunity to understand and prevent viral disease. Nature Biotechnology, 27(12), 1163–1172. doi: 10.1038/nbt.1593.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.University of Zurich, IBME (Institute of Biomedical Ethics)ZurichSwitzerland

Personalised recommendations