Science and Engineering Ethics

, Volume 15, Issue 3, pp 311–341 | Cite as

Cognitive Enhancement: Methods, Ethics, Regulatory Challenges

  • Nick BostromEmail author
  • Anders Sandberg
Original Paper


Cognitive enhancement takes many and diverse forms. Various methods of cognitive enhancement have implications for the near future. At the same time, these technologies raise a range of ethical issues. For example, they interact with notions of authenticity, the good life, and the role of medicine in our lives. Present and anticipated methods for cognitive enhancement also create challenges for public policy and regulation.


Cognitive enhancement Ethics Human enhancement IQ Intelligence Policy 



We are grateful to Rebecca Roache for helpful comments on an earlier version of this paper.


  1. Agar, N. (2004). Liberal eugenics: In defence of human enhancement. London: Blackwell Publishing.Google Scholar
  2. Alteheld, N., Roessler, G., Vobig, M., & Walter, R. (2004). The retina implant new approach to a visual prosthesis. Biomedizinische Technik, 49(4), 99–103.CrossRefGoogle Scholar
  3. Antal, A., Nitsche, M. A., Kincses, T. Z., Kruse, W., Hoffmann, K. P., & Paulus, W. (2004a). Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. European Journal of Neuroscience, 19(10), 2888–2892.CrossRefGoogle Scholar
  4. Antal, A., Nitsche, M. A., Kruse, W., Kincses, T. Z., Hoffmann, K. P., & Paulus, W. (2004b). Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of Cognitive Neuroscience, 16(4), 521–527.CrossRefGoogle Scholar
  5. Bailey, C. H., Bartsch, D., & Kandel, E. R. (1996). Toward a molecular definition of long-term memory storage. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13445–13452.CrossRefGoogle Scholar
  6. Banderet, L. E., & Lieberman, H. R. (1989). Treatment with tyrosine, a neurotransmitter precursor, reduces environmental-stress in humans. Brain Research Bulletin, 22(4), 759–762.CrossRefGoogle Scholar
  7. Bao, S. W., Chan, W. T., & Merzenich, M. M. (2001). Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412(6842), 79–83.CrossRefGoogle Scholar
  8. Barch, D. M. (2004). Pharmacological manipulation of human working memory. Psychopharmacology, 174(1), 126–135.CrossRefGoogle Scholar
  9. Barnes, D. E., Tager, I. B., Satariano, W. A., & Yaffe, K. (2004). The relationship between literacy and cognition in well-educated elders. Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 59(4), 390–395.Google Scholar
  10. Batejat, D. M., & Lagarde, D. P. (1999). Naps and modafinil as countermeasures for the effects of sleep deprivation on cognitive performance. Aviation Space and Environmental Medicine, 70(5), 493–498.Google Scholar
  11. Benton, D. (2001). Micro-nutrient supplementation and the intelligence of children. Neuroscience and Biobehavioral Reviews, 25(4), 297–309.CrossRefGoogle Scholar
  12. Blair, C., Gamson, D., Thorne, S., & Baker, D. (2005). Rising mean IQ: Cognitive demand of mathematics education for young children, population exposure to formal schooling, and the neurobiology of the prefrontal cortex. Intelligence, 33(1), 93–106.CrossRefGoogle Scholar
  13. Boire, R. G. (2001). On cognitive liberty. The Journal of Cognitive Liberties, 2(1), 7–22.Google Scholar
  14. Bostrom, N. (2003). Human genetic enhancements: A transhumanist perspective. Journal of Value Inquiry, 37(4), 493–506.CrossRefGoogle Scholar
  15. Bostrom, N. (2005). In defence of posthuman dignity. Bioethics, 19(3), 202–214.CrossRefGoogle Scholar
  16. Bostrom, N., & Ord, T. (2006). The reversal test: Eliminating status quo bias in bioethics. Ethics, 116(4), 656–680.CrossRefGoogle Scholar
  17. Breitenstein, C., Wailke, S., Bushuven, S., Kamping, S., Zwitserlood, P., Ringelstein, E. B., et al. (2004). D-Amphetamine boosts language learning independent of its cardiovascular and motor arousing effects. Neuropsychopharmacology, 29(9), 1704–1714.CrossRefGoogle Scholar
  18. Buchanan, A., Brock, D. W., Daniels, N., & Wikler, D. (2001). From chance to choice. Cambridge: Cambridge University Press.Google Scholar
  19. Butefisch, C. M., Khurana, V., Kopylev, L., & Cohen, L. G. (2004). Enhancing encoding of a motor memory in the primary motor cortex by cortical stimulation. Journal of Neurophysiology, 91(5), 2110–2116.CrossRefGoogle Scholar
  20. Buzan, T. (1982). Use your head. London: BBC Books.Google Scholar
  21. Caldwell, J. A., Jr., Caldwell, J. L., Smythe, N. K., I. I. I., & Hall, K. K. (2000). A double-blind, placebo-controlled investigation of the efficacy of modafinil for sustaining the alertness and performance of aviators: A helicopter simulator study. Psychopharmacology (Berl), 150(3), 272–282.CrossRefGoogle Scholar
  22. Calef, T., Pieper, M., & Coffey, B. (1999). Comparisons of eye movements before and after a speed-reading course. Journal of the American Optometric Association, 70(3), 171–181.Google Scholar
  23. Cardinali, D. P., Brusco, L. I., Lloret, S. P., & Furio, A. M. (2002). Melatonin in sleep disorders and jet-lag. Neuroendocrinology Letters, 23, 9–13.Google Scholar
  24. Carmena, J. M., Lebedev, M. A., Crist, R. E., O’Doherty, J. E., Santucci, D. M., Dimitrov, D. F., et al. (2003). Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biology, 1(2), 193–208.CrossRefGoogle Scholar
  25. Cattell, R. (1987). Intelligence: It’s structure, growth, and action. New York: Elsevier Science.Google Scholar
  26. Chatterjee, A. (2004). Cosmetic neurology—The controversy over enhancing movement, mentation, and mood. Neurology, 63(6), 968–974.Google Scholar
  27. Cochran, G., Hardy, J., & Harpending, H. (2006). Natural history of Ashkenazi intelligence. Journal of Biosocial Science, 38(5), 659–693.CrossRefGoogle Scholar
  28. Craig, I., & Plomin, R. (2006). Quantitative trait loci for IQ and other complex traits: Single-nucleotide polymorphism genotyping using pooled DNA and microarrays. Genes Brain and Behavior, 5, 32–37.CrossRefGoogle Scholar
  29. de Quervain, D. J. F., & Papassotiropoulos, A. (2006). Identification of a genetic cluster influencing memory performance and hippocampal activity in humans. Proceedings of the National Academy of Sciences of the United States of America, 103(11), 4270–4274.CrossRefGoogle Scholar
  30. Deijen, J. B., Wientjes, C. J. E., Vullinghs, H. F. M., Cloin, P. A., & Langefeld, J. J. (1999). Tyrosine improves cognitive performance and reduces blood pressure in cadets after one week of a combat training course. Brain Research Bulletin, 48(2), 203–209.CrossRefGoogle Scholar
  31. Diamond, M. C., Johnson, R. E., & Ingham, C. A. (1975). Morphological changes in young, adult and aging rat cerebral-cortex, hippocampus, and diencephalon. Behavioral Biology, 14(2), 163–174.CrossRefGoogle Scholar
  32. Drexler, K. E. (1991). Hypertext publishing and the evolution of knowledge. Social Intelligence, 1(2), 87–120.Google Scholar
  33. Edelhoff, S., Villacres, E. C., Storm, D. R., & Disteche, C. M. (1995). Mapping of adenylyl-cyclase genes type-I, type-II, type-III, type-IV, type-V and type-VI in mouse. Mammalian Genome, 6(2), 111–113.CrossRefGoogle Scholar
  34. Engelbart, D. C. (1962). Augmenting human intellect: A conceptual framework. Summary report AFOSR-3223 under Contract AF 49(638)-1024, SRI Project 3578 for Air Force Office of Scientific Research. Stanford Research Institute: Menlo Park, CA. Accessed 20 April 2009.
  35. Ericsson, A. K. (2003). Exceptional memorizers: Made, not born. Trends in Cognitive Sciences, 7(6), 233–235.CrossRefGoogle Scholar
  36. Ericsson, K. A., Chase, W. G., & Faloon, S. (1980). Acquisition of a memory skill. Science, 208(4448), 1181–1182.CrossRefGoogle Scholar
  37. Falls, W. A., Miserendino, M. J. D., & Davis, M. (1992). Extinction of fear-potentiated startle—Blockade by infusion of an NMDA antagonist into the Amygdala. Journal of Neuroscience, 12(3), 854–863.Google Scholar
  38. Fan, X., Sun, S., McNeese, M., & Yen, J. (2005). Extending the recognition-primed decision model to support human-agent collaboration. In Proceedings of AAMAS’05, Utrecht, Netherlands (July 25–29).Google Scholar
  39. Fan, X., Sun, S., Yen, J., Sun, B., Airy, G., McNeese, M., Yen, J., Hanratty, T., & Dumer, J. (2005). Collaborative RPD-enabled agents assisting the three-block challenge in C2CUT. In Proceedings of 2005 conference on behavior representation in modeling and simulation (BRIMS).Google Scholar
  40. Farah, M. J., Illes, J., Cook-Deegan, R., Gardner, H., Kandel, E., King, P., et al. (2004). Neurocognitive enhancement: What can we do and what should we do? Nature Reviews Neuroscience, 5(5), 421–425.CrossRefGoogle Scholar
  41. Farrand, P., Hussain, F., & Hennessy, E. (2002). The efficacy of the ‘mind map’ study technique. Medical Education, 36(5), 426–431.CrossRefGoogle Scholar
  42. Feltz, D. L., & Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance—A meta-analysis. Journal of Sport Psychology, 5(1), 25–57.Google Scholar
  43. Flynn, J. R. (1987). Massive IQ gains in 14 nations—What IQ tests really measure. Psychological Bulletin, 101(2), 171–191.CrossRefGoogle Scholar
  44. Foster, J. K., Lidder, P. G., & Sunram, S. I. (1998). Glucose and memory: Fractionation of enhancement effects? Psychopharmacology, 137(3), 259–270.CrossRefGoogle Scholar
  45. Fox, P. T., Raichle, M. E., Mintun, M. A., & Dence, C. (1988). Nonoxidative glucose consumption during focal physiologic neural activity. Science, 241(4864), 462–464.CrossRefGoogle Scholar
  46. Frank, R. H., Gilovich, T., & Regan, D. T. (1993). Does studying economics inhibit cooperation? Journal of Economic Perspectives, 7(2), 159–171.Google Scholar
  47. Fregni, F., Boggio, P. S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., et al. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166(1), 23–30.CrossRefGoogle Scholar
  48. Freo, U., Ricciardi, E., Pietrini, P., Schapiro, M. B., Rapoport, S. I., & Furey, M. L. (2005). Pharmacological modulation of prefrontal cortical activity during a working memory task in young and older humans: A pet study with physostigmine. American Journal of Psychiatry, 162(11), 2061–2070.CrossRefGoogle Scholar
  49. Fukuyama, F. (2002). Our posthuman future: Consequences of the biotechnology revolution. Farrar: Strauss and Giroux.Google Scholar
  50. Gazzaniga, M. S. (2005). The ethical brain. Washington, DC: Dana Press.Google Scholar
  51. Giles, J. (2005). Internet encyclopaedias go head to head. Nature, 438(7070), 900–901.CrossRefGoogle Scholar
  52. Gill, M., Haerich, P., Westcott, K., Godenick, K. L., & Tucker, J. A. (2006). Cognitive performance following modafinil versus placebo in sleep-deprived emergency physicians: A double-blind randomized crossover study. Academic Emergency Medicine, 13(2), 158–165.CrossRefGoogle Scholar
  53. Gladstone, D. J., & Black, S. E. (2000). Enhancing recovery after stroke with noradrenergic pharmacotherapy: A new frontier? Canadian Journal of Neurological Sciences, 27(2), 97–105.Google Scholar
  54. Glover, J. (1984). What sort of people should there be?. New York: Penguin.Google Scholar
  55. Goldstein, L. B. (1999). Amphetamine-facilitated poststroke recovery. Stroke, 30(3), 696–697.Google Scholar
  56. Gottfredson, L. S. (1997). Why G matters: The complexity of everyday life. Intelligence, 24(1), 79–132.CrossRefGoogle Scholar
  57. Gottfredson, L. S. (2004). Life, death, and intelligence. Journal of Cognitive Education and Psychology, 4(1), 23–46.Google Scholar
  58. Gow, A. J., Whiteman, M. C., Pattie, A., Whalley, L., Starr, J., & Deary, I. J. (2005). Lifetime intellectual function and satisfaction with life in old age: Longitudinal cohort study. British Medical Journal, 331(7509), 141–142.CrossRefGoogle Scholar
  59. Greenoug, W. T., & Volkmar, F. R. (1973). Pattern of dendritic branching in occipital cortex of rats reared in complex environments. Experimental Neurology, 40(2), 491–504.CrossRefGoogle Scholar
  60. Gulpinar, M. A., & Yegen, B. C. (2004). The physiology of learning and memory: Role of peptides and stress. Current Protein & Peptide Science, 5(6), 457–473.CrossRefGoogle Scholar
  61. Hanson, R., Opre, R., & Porter, D. (2006). Information aggregation and manipulation in an experimental market. Journal of Economic Behavior & Organization, 60(4), 449–459.CrossRefGoogle Scholar
  62. Hanson, R., Polk, C., Ledyard, J., & Ishikida, T. (2003). The policy analysis market: An electronic commerce application of a combinatorial information market. In Proceedings of ACM conference on electronic commerce 2003, San Diego.Google Scholar
  63. Hartog, J., & Oosterbeek, H. (1998). Health, wealth and happiness: Why pursue a higher education? Economics of Education Review, 17(3), 245–256.CrossRefGoogle Scholar
  64. Healey, J., & Picard, R. W. (1998). Startlecam: A cybernetic wearable camera. In Proceedings of second international symposium on wearable computing, Pittsburgh, PA.Google Scholar
  65. Helland, I. B., Smith, L., Saarem, K., Saugstad, O. D., & Drevon, C. A. (2003). Maternal supplementation with very-long-chain N-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics, 111(1), 39–44.CrossRefGoogle Scholar
  66. Hofmann, S. G., Meuret, A. E., Smits, J. A. J., Simon, N. M., Pollack, M. H., Eisenmenger, K., et al. (2006). Augmentation of exposure therapy with D-cycloserine for social anxiety disorder. Archives of General Psychiatry, 63(3), 298–304.CrossRefGoogle Scholar
  67. Hughes, J. (2004). Citizen Cyborg: Why democratic societies must respond to the redesigned human of the future. Boulder, CO: Westview Press.Google Scholar
  68. Hummel, F. C., & Cohen, L. G. (2005). Drivers of brain plasticity. Current Opinion in Neurology, 18(6), 667–674.CrossRefGoogle Scholar
  69. Ingvar, M., AmbrosIngerson, J., Davis, M., Granger, R., Kessler, M., Rogers, G. A., et al. (1997). Enhancement by an Ampakine of memory encoding in humans. Experimental Neurology, 146(2), 553–559.CrossRefGoogle Scholar
  70. Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), 696–701.CrossRefGoogle Scholar
  71. Iversen, S. D. (1998). The pharmacology of memory. Comptes Rendus De L Academie Des Sciences Serie Iii-Sciences De La Vie-Life Sciences, 321(2–3), 209–215.CrossRefGoogle Scholar
  72. Jackson, P. L., Doyon, J., Richards, C. L., & Malouin, F. (2004). The efficacy of combined physical and mental practice in the learning of a foot-sequence task after stroke: A case report. Neurorehabilitation and Neural Repair, 18(2), 106–111.CrossRefGoogle Scholar
  73. Jebara, T., Eyster, C., Weaver, J., Starner, T., & Pentland, A. (1997). Stochasticks: Augmenting the Billiards experience with probabilistic vision and wearable computers. In Proceedings of the international symposium on wearable computers. Cambridge, MA.Google Scholar
  74. Johnston, G. (2004). Healthy, wealthy and wise? A review of the wider benefits of education. Report 04/04. New Zealand Treasury Working Paper.Google Scholar
  75. Jonas, H. (1985). Technik Medizin Und Ethik: Zur Praxis Des Prinzips Verantwortung. Frankfurt am Main: Suhrkamp.Google Scholar
  76. Kamm, F. (2006). What is and is not wrong with enhancement? KSG working paper RWP06-020. John F. Kennedy School of Government.Google Scholar
  77. Kass, L. (2002). Life, liberty, and defense of dignity: The challenge for bioethics. New York: Encounter Books.Google Scholar
  78. Kass, L. (2003). Ageless bodies, happy souls: Biotechnology and the pursuit of perfection. The New Atlantis, Spring(1), 9–28.Google Scholar
  79. Kennedy, P. R., & Bakay, R. A. E. (1998). Restoration of neural output from a paralyzed patient by a direct brain connection. NeuroReport, 9(8), 1707–1711.CrossRefGoogle Scholar
  80. Kennedy, D. O., Pace, S., Haskell, C., Okello, E. J., Milne, A., & Scholey, A. B. (2006). Effects of cholinesterase inhibiting sage (Salvia Officinalis) on mood, anxiety and performance on a psychological stressor battery. Neuropsychopharmacology, 31(4), 845–852.CrossRefGoogle Scholar
  81. Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279(5357), 1714–1718.CrossRefGoogle Scholar
  82. Kincses, T. Z., Antal, A., Nitsche, M. A., Bartfai, O., & Paulus, W. (2004). Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia, 42(1), 113–117.CrossRefGoogle Scholar
  83. Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604–632.CrossRefGoogle Scholar
  84. Kobayashi, M., Hutchinson, S., Theoret, H., Schlaug, G., & Pascual-Leone, A. (2004). Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements. Neurology, 62(1), 91–98.Google Scholar
  85. Kolnai, A. (1976). Dignity. Philosophy, 51, 251–271.CrossRefGoogle Scholar
  86. Korol, D. L., & Gold, P. E. (1998). Glucose, memory, and aging. American Journal of Clinical Nutrition, 67(4), 764s–771s.Google Scholar
  87. Lashley, K. S. (1917). The effects of strychnine and caffeine upon rate of learning. Psychobiology, 1, 141–169.CrossRefGoogle Scholar
  88. Lee, E. H. Y., & Ma, Y. L. (1995). Amphetamine enhances memory retention and facilitates norepinephrine release from the hippocampus in rats. Brain Research Bulletin, 37(4), 411–416.CrossRefGoogle Scholar
  89. Lieberman, H. R. (2001). The effects of ginseng, ephedrine, and caffeine on cognitive performance, mood and energy. Nutrition Reviews, 59(4), 91–102.Google Scholar
  90. Lieberman, H. R. (2003). Nutrition, brain function and cognitive performance. Appetite, 40(3), 245–254.CrossRefGoogle Scholar
  91. Lorrayne, H. (1996). Page a minute memory book. New York: Ballantine Books.Google Scholar
  92. Lynch, G. (1998). Memory and the brain: Unexpected chemistries and a new pharmacology. Neurobiology of Learning and Memory, 70(1–2), 82–100.CrossRefGoogle Scholar
  93. Lynch, G. (2002). Memory enhancement: The search for mechanism-based drugs. Nature Neuroscience, 5, 1035–1038.CrossRefGoogle Scholar
  94. Maguire, E. A., Valentine, E. R., Wilding, J. M., & Kapur, N. (2003). Routes to remembering: The brains behind superior memory. Nature Neuroscience, 6(1), 90–95.CrossRefGoogle Scholar
  95. Mann, S. (1997). Wearable computing: A first step toward personal imaging. Computer, 30(2), 25–31.CrossRefGoogle Scholar
  96. Mann, S. (2001). Wearable computing: Toward humanistic intelligence. IEEE Intelligent Systems, 16(3), 10–15.CrossRefGoogle Scholar
  97. Mann, S., & Niedzviecki, H. (2001). Cyborg: Digital destiny and human possibility in the age of the wearable computer. Canada: Doubleday.Google Scholar
  98. Marshall, L., Molle, M., Hallschmid, M., & Born, J. (2004). Transcranial direct current stimulation during sleep improves declarative memory. Journal of Neuroscience, 24(44), 9985–9992.CrossRefGoogle Scholar
  99. McMorris, T., Harris, R. C., Swain, J., Corbett, J., Collard, K., Dyson, R. J., et al. (2006). Effect of creatine supplementation and sleep deprivation, with mild exercise, on cognitive and psychomotor performance, mood state, and plasma concentrations of catecholamines and cortisol. Psychopharmacology, 185(1), 93–103.CrossRefGoogle Scholar
  100. Meck, W. H., Smith, R. A., & Williams, C. L. (1988). Prenatal and postnatal choline supplementation produces long-term facilitation of spatial memory. Developmental Psychobiology, 21(4), 339–353.CrossRefGoogle Scholar
  101. Mehlman, M. J. (2000). The law of above averages: Leveling the new genetic enhancement playing field. Iowa Law Review, 85(2), 517–593.Google Scholar
  102. Meikle, A., Riby, L. M., & Stollery, B. (2005). Memory processing and the glucose facilitation effect: The effects of stimulus difficulty and memory load. Nutritional Neuroscience, 8(4), 227–232.CrossRefGoogle Scholar
  103. Mellott, T. J., Williams, C. L., Meck, W. H., & Blusztajn, J. K. (2004). Prenatal choline supplementation advances hippocampal development and enhances MAPK and CREB activation. FASEB Journal, 18(1), 545–547.Google Scholar
  104. Minninger, J. (1997). Total recall. How to boost your memory power. New York: MJF Books.Google Scholar
  105. Mondadori, C. (1996). Nootropics: Preclinical results in the light of clinical effects; comparison with tacrine. Critical Reviews in Neurobiology, 10(3–4), 357–370.Google Scholar
  106. Muir, T., & Zegarac, M. (2001). Societal costs of exposure to toxic substances: Economic and health costs of four case studies that are candidates for environmental causation. Environmental Health Perspectives, 109, 885–903.CrossRefGoogle Scholar
  107. Muller, U., Steffenhagen, N., Regenthal, R., & Bublak, P. (2004). Effects of modafinil on working memory processes in humans. Psychopharmacology, 177(1–2), 161–169.CrossRefGoogle Scholar
  108. Murphy, K. J., Foley, A. G., O’Connell, A. W., & Regan, C. M. (2006). Chronic exposure of rats to cognition enhancing drugs produces a neuroplastic response identical to that obtained by complex environment rearing. Neuropsychopharmacology, 31(1), 90–100.Google Scholar
  109. Myrick, H., Malcolm, R., Taylor, B., & LaRowe, S. (2004). Modafinil: Preclinical, clinical, and post-marketing surveillance—A review of abuse liability issues. Annals of Clinical Psychiatry, 16(2), 101–109.Google Scholar
  110. Nava, E., Landau, D., Brody, S., Linder, L., & Schachinger, H. (2004). Mental relaxation improves long-term incidental visual memory. Neurobiology of Learning and Memory, 81(3), 167–171.CrossRefGoogle Scholar
  111. Neisser, U. (1997). Rising scores on intelligence tests. American Scientist, 85(5), 440–447.Google Scholar
  112. Newhouse, P. A., Potter, A., & Singh, A. (2004). Effects of nicotinic stimulation on cognitive performance. Current Opinion in Pharmacology, 4(1), 36–46.CrossRefGoogle Scholar
  113. Newson, A. (2000). Is being intelligent good? Addressing questions of value in behavioural genetics. In Proceedings of 5th world congress of the international association of bioethics. London.Google Scholar
  114. Nicolelis, M. A. L., Dimitrov, D., Carmena, J. M., Crist, R., Lehew, G., Kralik, J. D., et al. (2003). Chronic, multisite, multielectrode recordings in macaque monkeys. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 11041–11046.CrossRefGoogle Scholar
  115. Nilsson, M., Perfilieva, E., Johansson, U., Orwar, O., & Eriksson, P. S. (1999). Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. Journal of Neurobiology, 39(4), 569–578.CrossRefGoogle Scholar
  116. Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., et al. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15(4), 619–626.CrossRefGoogle Scholar
  117. Nyberg, L., Sandblom, J., Jones, S., Neely, A. S., Petersson, K. M., Ingvar, M., et al. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13728–13733.CrossRefGoogle Scholar
  118. Pascual-Leone, A., Tarazona, F., Keenan, J., Tormos, J. M., Hamilton, R., & Catala, M. D. (1999). Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia, 37(2), 207–217.CrossRefGoogle Scholar
  119. Patil, P. G., Carmena, L. M., Nicolelis, M. A. L., & Turner, D. A. (2004). Ensemble recordings of human subcortical neurons as a source of motor control signals for a brain-machine interface. Neurosurgery, 55(1), 27–35.Google Scholar
  120. Patten, B. M. (1990). The history of memory arts. Neurology, 40(2), 346–352.Google Scholar
  121. Peterman, M. C., Noolandi, J., Blumenkranz, M. S., & Fishman, H. A. (2004). Localized chemical release from an artificial synapse chip. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 9951–9954.CrossRefGoogle Scholar
  122. Petersson, K. M., Reis, A., Askelof, S., Castro-Caldas, A., & Ingvar, M. (2000). Language processing modulated by literacy: A network analysis of verbal repetition in literate and illiterate subjects. Journal of Cognitive Neuroscience, 12(3), 364–382.CrossRefGoogle Scholar
  123. Pitman, R. K., Sanders, K. M., Zusman, R. M., Healy, A. R., Cheema, F., Lasko, N. B., et al. (2002). Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biological Psychiatry, 51(2), 189–192.CrossRefGoogle Scholar
  124. Power, A. E., Vazdarjanova, A., & McGaugh, J. L. (2003). Muscarinic cholinergic influences in memory consolidation. Neurobiology of Learning and Memory, 80(3), 178–193.CrossRefGoogle Scholar
  125. Rae, C., Digney, A. L., McEwan, S. R., & Bates, T. C. (2003). Oral creatine monohydrate supplementation improves brain performance: A double-blind, placebo-controlled, cross-over trial. Proceedings of the Royal Society of London Series B, Biological Sciences, 270(1529), 2147–2150.CrossRefGoogle Scholar
  126. Raine, A., Reynolds, C., Venables, P. H., & Mednick, S. A. (2002). Stimulation seeking and intelligence: A prospective longitudinal study. Journal of Personality and Social Psychology, 82(4), 663–674.CrossRefGoogle Scholar
  127. Randall, D. C., Shneerson, J. M. & File S. E. (2005). Cognitive effects of modafinil in student volunteers may depend on IQ. Pharmacology Biochemistry and Behavior, 82(1), 133–139.CrossRefGoogle Scholar
  128. Raymond, E. S. (2001). The cathedral and the bazaar. Sebastopol, CA: O’Reilly.Google Scholar
  129. Ressler, K. J., Rothbaum, B. O., Tannenbaum, L., Anderson, P., Graap, K., Zimand, E., et al. (2004). Cognitive enhancers as adjuncts to psychotherapy—Use of D-cycloserine in phobic individuals to facilitate extinction of fear. Archives of General Psychiatry, 61(11), 1136–1144.CrossRefGoogle Scholar
  130. Rhodes, B., & Starner, T. (1996). Remembrance agent: A continuously running automated information retrieval system. In Proceedings of the first international conference on the practical application of intelligent agents and multi agent technology (PAAM ‘96), London.Google Scholar
  131. Routtenberg, A., Cantallops, I., Zaffuto, S., Serrano, P., & Namgung, U. (2000). Enhanced learning after genetic overexpression of a brain growth protein. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7657–7662.CrossRefGoogle Scholar
  132. Rubinstein, A. (2005). A sceptic’s comment on the study of economics. University of Tel Aviv. Accessed 20 April 2009.
  133. Rusted, J. M., Trawley, S., Heath, J., Kettle, G., & Walker, H. (2005). Nicotine improves memory for delayed intentions. Psychopharmacology (Berl), 182(3), 355–365.CrossRefGoogle Scholar
  134. Salkever, D. S. (1995). Updated estimates of earnings benefits from reduced exposure of children to environmental lead. Environmental Research, 70(1), 1–6.CrossRefGoogle Scholar
  135. Sandberg, A. (2003). Morphologic freedom. Report #1. Eudoxa Policy Studies. Accessed 20 April 2009.
  136. Sandel, M. J. (2002). What’s wrong with enhancement. The President’s Council on Bioethics. Accessed 20 April 2009.
  137. Sandel, M. J. (2004). The case against perfection: What’s wrong with designer children, bionic athletes, and genetic engineering. The Atlantic Monthly, 293(4), 51–62.Google Scholar
  138. Savulescu, J. (2001). Procreative beneficence: Why we should select the best children. Bioethics, 15(5–6), 413–426.CrossRefGoogle Scholar
  139. Schillerstrom, J. E., Horton, M. S., & Royall, D. R. (2005). The impact of medical illness on executive function. Psychosomatics, 46(6), 508–516.CrossRefGoogle Scholar
  140. Schneider, J. S., Lee, M. H., Anderson, D. W., Zuck, L., & Lidsky, T. I. (2001). Enriched environment during development is protective against lead-induced neurotoxicity. Brain Research, 896(1–2), 48–55.CrossRefGoogle Scholar
  141. Sellen, A. J., Louie, G., Harris, J. E., & Wilkins, A. J. (1996). What brings intentions to mind? An in situ study of prospective memory. Rank Xerox Research Centre Technical Report EPC-1996-104.Google Scholar
  142. Shenoy, K. V., Meeker, D., Cao, S. Y., Kureshi, S. A., Pesaran, B., Buneo, C. A., et al. (2003). Neural prosthetic control signals from plan activity. NeuroReport, 14(4), 591–596.CrossRefGoogle Scholar
  143. Sigelman, L. (1981). Is ignorance bliss—A reconsideration of the folk wisdom. Human Relations, 34(11), 965–974.CrossRefGoogle Scholar
  144. Silver, L. (1998). Remaking Eden. New York: Harper Perennial.Google Scholar
  145. Singletary, B. A., & Starner, T. (2000). Symbiotic interfaces for wearable face recognition. In Proceedings of HCII2001 workshop on wearable computing. New Orleans, LA.Google Scholar
  146. Smith, A., Brice, C., Nash, J., Rich, N., & Nutt, D. J. (2003). Caffeine and central noradrenaline: Effects on mood, cognitive performance, eye movements and cardiovascular function. Journal of Psychopharmacology, 17(3), 283–292.CrossRefGoogle Scholar
  147. Snyder, A. W., Bossomaier, T., & Mitchell, D. J. (2004). Concept formation: ‘Object’ attributes dynamically inhibited from conscious awareness. Journal of Integrative Neuroscience, 3(1), 31–46.Google Scholar
  148. Snyder, A. W., Mulcahy, E., Taylor, J. L., Mitchell, D. J., Sachdev, P., & Gandevia, S. C. (2003). Savant-like skills exposed in normal people by suppressing the left fronto-temporal lobe. Journal of Integrative Neuroscience, 2(2), 149–158.CrossRefGoogle Scholar
  149. Soetens, E., Casaer, S., Dhooge, R., & Hueting, J. E. (1995). Effect of amphetamine on long-term retention of verbal material. Psychopharmacology, 119(2), 155–162.CrossRefGoogle Scholar
  150. Soetens, E., Dhooge, R., & Hueting, J. E. (1993). Amphetamine enhances human-memory consolidation. Neuroscience Letters, 161(1), 9–12.CrossRefGoogle Scholar
  151. Stroemer, R. P., Kent, T. A., & Hulsebosch, C. E. (1998). Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with D-amphetamine therapy after neocortical infarction in rats. Stroke, 29(11), 2381–2393.Google Scholar
  152. Sunram-Lea, S. I., Foster, J. K., Durlach, P., & Perez, C. (2002). Investigation into the significance of task difficulty and divided allocation of resources on the glucose memory facilitation effect. Psychopharmacology, 160(4), 387–397.CrossRefGoogle Scholar
  153. Surowiecki, J. (2004). The wisdom of crowds: Why the many are smarter than the few and how collective wisdom shapes business, economies, societies and nations. New York: Doubleday.Google Scholar
  154. Tan, D. P., Liu, Q. Y., Koshiya, N., Gu, H., & Alkon, D. (2006). Enhancement of long-term memory retention and short-term synaptic plasticity in Cbl-b null mice. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 5125–5130.CrossRefGoogle Scholar
  155. Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., et al. (1999). Genetic enhancement of learning and memory in mice. Nature, 401(6748), 63–69.CrossRefGoogle Scholar
  156. Teitelman, E. (2001). Off-label uses of modafinil. American Journal of Psychiatry, 158(8), 1341.CrossRefGoogle Scholar
  157. The President’s Council on Bioethics. (2003). Beyond therapy: Biotechnology and the pursuit of happiness. Accessed 20 April 2009.
  158. Tieges, Z., Richard Ridderinkhof, K., Snel, J., & Kok, A. (2004). Caffeine strengthens action monitoring: Evidence from the error-related negativity. Brain Research. Cognitive Brain Research, 21(1), 87–93.CrossRefGoogle Scholar
  159. Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112(3), 297–324.CrossRefGoogle Scholar
  160. Trachtenberg, J. (2000). The Trachtenberg speed system of basic mathematics. London: Souvenir Press.Google Scholar
  161. Turner, D. C., Robbins, T. W., Clark, L., Aron, A. R., Dowson, J., & Sahakian, B. J. (2003). Cognitive enhancing effects of modafinil in healthy volunteers. Psychopharmacology, 165(3), 260–269.Google Scholar
  162. van Beek, T. A. (2002). Chemical analysis of Ginkgo Biloba leaves and extracts. Journal of Chromatography. A, 967(1), 21–55.CrossRefGoogle Scholar
  163. Vaynman, S., & Gomez-Pinilla, F. (2005). License to run: Exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabilitation and Neural Repair, 19(4), 283–295.CrossRefGoogle Scholar
  164. von Wild, K., Rabischong, P., Brunelli, G., Benichou, M., & Krishnan, K. (2002). Computer added locomotion by implanted electrical stimulation in paraplegic patients (SUAW). Acta Neurochirurgica. Supplementum, 79, 99–104.Google Scholar
  165. Walsh, R. N., Budtz-Olsen, O. E., Penny, J. E., & Cummins, R. A. (1969). The effects of environmental complexity on the histology of the rat hippocampus. The Journal of Comparative Neurology, 137(3), 361–365.CrossRefGoogle Scholar
  166. Wang, H. B., Ferguson, G. D., Pineda, V. V., Cundiff, P. E., & Storm, D. R. (2004). Overexpression of type-1 adenylyl cyclase in mouse forebrain enhances recognition memory and LTP. Nature Neuroscience, 7(6), 635–642.CrossRefGoogle Scholar
  167. Warburton, D. M. (1992). Nicotine as a cognitive enhancer. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 16(2), 181–191.CrossRefGoogle Scholar
  168. Warwick, K., Gasson, M., Hutt, B., Goodhew, I., Kyberd, P., Andrews, B., et al. (2003). The application of implant technology for cybernetic systems. Archives of Neurology, 60(10), 1369–1373.CrossRefGoogle Scholar
  169. Watanabe, A., Kato, N., & Kato, T. (2002). Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neuroscience Research, 42(4), 279–285.CrossRefGoogle Scholar
  170. Wei, F., Wang, G. D., Kerchner, G. A., Kim, S. J., Xu, H. M., Chen, Z. F., et al. (2001). Genetic enhancement of inflammatory pain by forebrain NR2B overexpression. Nature Neuroscience, 4(2), 164–169.CrossRefGoogle Scholar
  171. Weiser, M. (1991). The computer for the twenty-first century. Scientific American, 265(3), 94–110.CrossRefGoogle Scholar
  172. Wenk, G. (1989). An hypothesis on the role of glucose in the mechanism of action of cognitive enhancers. Psychopharmacology, 99, 431–438.CrossRefGoogle Scholar
  173. Whalley, L. J., & Deary, I. J. (2001). Longitudinal cohort study of childhood IQ and survival up to age 76. British Medical Journal, 322(7290), 819–822.CrossRefGoogle Scholar
  174. Wilkinson, L., Scholey, A., & Wesnes, K. (2002). Chewing gum selectively improves aspects of memory in healthy volunteers. Appetite, 38(3), 235–236.CrossRefGoogle Scholar
  175. Winder, R., & Borrill, J. (1998). Fuels for memory: The role of oxygen and glucose in memory enhancement. Psychopharmacology, 136(4), 349–356.CrossRefGoogle Scholar
  176. Winship, C., & Korenman, S. (1997). Does staying in school make you smarter? The effect of education on IQ in the bell curve. In B. Devlin, S. E. Fienberg, & K. Roeder (Eds.), Intelligence, genes, and success: Scientists respond to the bell curve (pp. 215–234). New York: Springer.Google Scholar
  177. Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H., Schalk, G., et al. (2000). Brain-computer interface technology: A review of the first international meeting. IEEE Transactions on Rehabilitation Engineering, 8(2), 164–173.CrossRefGoogle Scholar
  178. Yates, F. (1966). The art of memory. Chicago: University of Chicago Press.Google Scholar
  179. Zhou, M. F., & Suszkiw, J. B. (2004). Nicotine attenuates spatial learning lead deficits induced in the rat by perinatal exposure. Brain Research, 999(1), 142–147.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Future of Humanity Institute, Faculty of Philosophy & James Martin 21st Century SchoolOxford UniversityOxfordUK

Personalised recommendations