Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Interfacial Assembly of a Cashew Nut (Anacardium occidentale) Testa Extract onto a Cellulose-Based Film from Sugarcane Bagasse to Produce an Active Packaging Film with pH-Triggered Release Mechanism

  • 34 Accesses


This study aims to produce a biodegradable active packaging film that is pH sensitive, and has a good antioxidant and antimicrobial activity. To do this, a novel phenolic extract was interfacially assembled onto a cellulose film, resulting in a film with a pH-triggered release mechanism of the active polyphenol agent. First, an aqueous extraction of cashew nut testa (CTE) was performed and subsequently, the CTE was characterized. The disc diffusion assay showed that CTE exhibited antimicrobial activity towards the food pathogens Escherichia coli (6 mm) and Staphylcoccus aureus (12 mm). CTE was also cytotoxic against cancer HepG2 and HEK293 cells, reducing the viability to 52% and 47%, respectively. It was incorporated into a cellulose-based packaging film, prepared from the by-product, sugarcane bagasse (SC) through interfacial assembly. The incorporation of CTE resulted in a film with good antimicrobial activity, excellent antioxidant content (91%), and has extremely high thermal stability (290 °C). FTIR indicated the formation of hydrogen bond between the SC cellulose-based film and CTE. The hydrogen bonds formed between the cellulose film and CTE became the driving force behind the pH-triggered release mechanism. It was found that the active agent, tannic acid, could be controllably released from the film, depending on the pH of the environment. Our strategy to produce a cellulose-based film impregnated with a phenolic extract, using interfacial assembly, resulted in an active packaging film with pH-triggered release mechanism. This film could be useful to extend the shelf life of perishable food items.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Amjadi, S., Emaminia, S., Nazari, M., Heyat Davudian, S., Roufegarinejad, L., & Hamishehkar, H. (2019). Application of reinforced ZnO nanoparticle-incorporated gelatin bionanocomposite film with chitosan nanofiber for packaging of chicken fillet and cheese as food models. Food and Bioprocess Technology., 12, 1205–1219.

  2. Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology., 48, 51–62.

  3. Aziz, S., & Almasi, H. (2018). Physical characteristics, release properties, and antioxidant and antimicrobial activities of whey protein isolate films incorporated with thyme (Thymus vulgaris l.) extract-loaded nanoliposomes. Food and Bioprocess Technology., 11(8), 1552–1565.

  4. Boyacı, D., & Yemenicioğlu, A. (2018). Expanding horizons of active packaging: design of consumer-controlled release systems helps risk management of susceptible individuals. Food Hydrocolloids, 79, 291–300.

  5. Chandrasekara, N., & Shahidi, F. (2011). Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa. Journal of Agricultural and Food Chemistry., 59(9), 5006–5014.

  6. Crizel, T., Rios, A., Alves, V., Bandarra, N., Moldão Martins, M., & Flôres, S. (2017). Biodegradable films based on gelatin and papaya peel microparticles with antioxidant properties. Food and Bioprocess Technology., 11(3), 536–550.

  7. Cyras, V. P., Manfredi, L. B., Ton-That, M.-T., & Vázquez, A. (2008). Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydrate Polymers., 73(1), 55–63.

  8. Domínguez, R., Barba, F. J., Gómez, B., Putnik, P., Bursać Kovačević, D., Pateiro, M., Santos, E. M., & Lorenzo, J. M. (2018). Active packaging films with natural antioxidants to be used in meat industry: a review. Food Research International., 113, 93–101.

  9. Edison, T., Atchudan, R., Sethuraman, M. G., & Lee, Y. R. (2016). Reductive-degradation of carcinogenic azo dyes using Anacardium occidentale testa derived silver nanoparticles. Journal of Photochemistry and Photobiology B: Biology., 162, 604–610.

  10. Elshafie, H. S., Armentano, M. F., Carmosino, M., Bufo, S. A., De Feo, V., & Camele, I. (2017). Cytotoxic activity of Origanum vulgare l. on hepatocellular carcinoma cell line HepG2 and evaluation of its biological activity. Molecules (Basel, Switzerland), 22(9), 1435.

  11. Erel, I., Schlaad, H., & Demirel, A. L. (2011). Effect of structural isomerism and polymer end group on the pH-stability of hydrogen-bonded multilayers. Journal of Colloid and Interface Science., 361(2), 477–482.

  12. Erel-Unal, I., & Sukhishvili, S. A. (2008). Hydrogen-bonded multilayers of a neutral polymer and a polyphenol. Macromolecules., 41(11), 3962–3970.

  13. Fahrioğlu, U., Dodurga, Y., Elmas, L., & Seçme, M. (2016). Ferulic acid decreases cell viability and colony formation while inhibiting migration of MIA PaCa-2 human pancreatic cancer cells in vitro. Gene, 576(1, Part 3), 476–482.

  14. Flores-Morales, A., Jiménez-Estrada, M., & Mora-Escobedo, R. (2012). Determination of the structural changes by FT-IR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydrate Polymers., 87, 61–68.

  15. Fu, F., Li, L., Liu, L., Cai, J., Zhang, Y., Zhou, J., & Zhang, L. (2015). Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Applied Materials & Interfaces., 7(4), 2597–2606.

  16. Ghaderi, M., Mousavi, M., Yousefi, H., & Labbafi, M. (2014). All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydrate Polymers., 104, 59–65.

  17. Gupta, S., Lee, J. J. L., & Chen, W. N. (2018). Analysis of improved nutritional composition of potential functional food (okara) after probiotic solid-state fermentation. Journal of Agricultural and Food Chemistry., 66(21), 5373–5381.

  18. Kale, R., Bansal, P., & Gorade, V. (2017). Extraction of microcrystalline cellulose from cotton sliver and its comparison with commercial microcrystalline cellulose. Journal of Polymers and the Environment., 26, 355–364.

  19. Kamath, V., & Rajini, P. S. (2007). The efficacy of cashew nut (Anacardium occidentale l.) skin extract as a free radical scavenger. Food Chemistry., 103(2), 428–433.

  20. Kamath, V., Joshi, A. K. R., & Rajini, P. S. (2008). Dimethoate induced biochemical perturbations in rat pancreas and its attenuation by cashew nut skin extract. Pesticide Biochemistry and Physiology., 90(1), 58–65.

  21. Kim, T. J., Silva, J. L., Kim, M. K., & Jung, Y. S. (2010). Enhanced antioxidant capacity and antimicrobial activity of tannic acid by thermal processing. Food Chemistry., 118(3), 740–746.

  22. Kim, S., Gim, T., & Kang, S. M. (2015). Versatile, tannic acid-mediated surface PEGylation for marine antifouling applications. ACS Applied Materials & Interfaces., 7(12), 6412–6416.

  23. Kuswandi, B., Jayus, R. A., Abdullah, A., Heng, L. Y., & Ahmad, M. (2012). A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control, 25(1), 184–189.

  24. Le Bourvellec, C., & Renard, C. M. (2012). Interactions between polyphenols and macromolecules: quantification methods and mechanisms. Critical Reviews in Food Science and Nutrition., 52(3), 213–248.

  25. Li, M., Zhang, F., Liu, Z., Guo, X., Wu, Q., & Qiao, L. (2018). Controlled release system by active gelatin film incorporated with β-cyclodextrin-thymol inclusion complexes. Food and Bioprocess Technology, 11.

  26. Li, P., Sirviö, J. A., Haapala, A., Khakalo, A., & Liimatainen, H. (2019). Anti-oxidative and UV-absorbing biohybrid film of cellulose nanofibrils and tannin extract. Food Hydrocolloids, 92, 208–217.

  27. Mauceri, H. J., Hanna, N. N., Beckett, M. A., Gorski, D. H., Staba, M. J., Stellato, K. A., Bigelow, K., Heimann, R., Gately, S., Dhanabal, M., Soff, G. A., Sukhatme, V. P., Kufe, D. W., & Weichselbaum, R. R. (1998). Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature., 394(6690), 287–291.

  28. Meena Kumari, M., Aromal, S. A., & Philip, D. (2013). Synthesis of monodispersed palladium nanoparticles using tannic acid and its optical non-linearity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy., 103, 130–133.

  29. Missio, A. L., Mattos, B. D., Ferreira, D. F., Magalhães, W. L. E., Bertuol, D. A., Gatto, D. A., Petutschnigg, A., & Tondi, G. (2018). Nanocellulose-tannin films: from trees to sustainable active packaging. Journal of Cleaner Production., 184, 143–151.

  30. Mousavi Khaneghah, A., Hashemi, S. M. B., & Limbo, S. (2018). Antimicrobial agents and packaging systems in antimicrobial active food packaging: an overview of approaches and interactions. Food and Bioproducts Processing., 111, 1–19.

  31. Mujtaba, M., Koc, B., Salaberria, A. M., Ilk, S., Cansaran-Duman, D., Akyuz, L., Cakmak, Y. S., Kaya, M., Khawar, K. M., Labidi, J., & Boufi, S. (2019). Production of novel chia-mucilage nanocomposite films with starch nanocrystals; an inclusive biological and physicochemical perspective. International Journal of Biological Macromolecules., 133, 663–673.

  32. Ng, K. R., Lyu, X., Mark, R., & Chen, W. N. (2019). Antimicrobial and antioxidant activities of phenolic metabolites from flavonoid-producing yeast: potential as natural food preservatives. Food Chemistry., 270, 123–129.

  33. Nnaji, N. J. N., Ani, J. U., Aneke, L. E., Onukwuli, O. D., Okoro, U. C., & Ume, J. I. (2014). Modelling the coag-flocculation kinetics of cashew nut testa tannins in an industrial effluent. Journal of Industrial and Engineering Chemistry., 20(4), 1930–1935.

  34. Orsuwan, A., & Sothornvit, R. (2018). Active banana flour nanocomposite films incorporated with garlic essential oil as multifunctional packaging material for food application. Food and Bioprocess Technology., 11(6), 1199–1210.

  35. Ozer, B. B. P., Uz, M., Oymaci, P., & Altinkaya, S. A. (2016). Development of a novel strategy for controlled release of lysozyme from whey protein isolate based active food packaging films. Food Hydrocolloids, 61, 877–886.

  36. Park, N.-M., Choi, S., Oh, J. E., & Hwang, D. Y. (2019). Facile extraction of cellulose nanocrystals. Carbohydrate Polymers., 223, 115114.

  37. Parveen, S., Chaudhury, P., Dasmahapatra, U., & Dasgupta, S. (2019). Biodegradable protein films from gallic acid and the cataractous eye protein isolate. International Journal of Biological Macromolecules., 139, 12–20.

  38. Philip, D., & Unni, C. (2011). Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Physica E: Low-dimensional Systems and Nanostructures., 43(7), 1318–1322.

  39. Pirsa, S., & Shamusi, T. (2019). Intelligent and active packaging of chicken thigh meat by conducting nano structure cellulose-polypyrrole-ZnO film. Materials Science and Engineering: C., 102, 798–809.

  40. Qin, F., Yao, L., Lu, C., Li, C., Zhou, Y., Su, C., Chen, B., & Shen, Y. (2019). Phenolic composition, antioxidant and antibacterial properties, and in vitro anti-HepG2 cell activities of wild apricot (Armeniaca sibirica) kernel skins. Food and Chemical Toxicology., 129, 354–364.

  41. Rajini, P. S. (2011). Chapter 36 - cashew nut (Anacardium occidentale) skin extract as a free radical scavenger. In V. R. Preedy, R. R. Watson, & V. B. Patel (Eds.), Nuts and seeds in health and disease prevention (pp. 301–308). San Diego: Academic Press.

  42. Rivero, S., García, M. A., & Pinotti, A. (2010). Crosslinking capacity of tannic acid in plasticized chitosan films. Carbohydrate Polymers., 82(2), 270–276.

  43. Sarwar, M. S., Niazi, M. B. K., Jahan, Z., Ahmad, T., & Hussain, A. (2018). Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydrate Polymers., 184, 453–464.

  44. Souza, V. G. L., Pires, J. R. A., Vieira, É. T., Coelhoso, I. M., Duarte, M. P., & Fernando, A. L. (2019). Activity of chitosan-montmorillonite bionanocomposites incorporated with rosemary essential oil: from in vitro assays to application in fresh poultry meat. Food Hydrocolloids, 89, 241–252.

  45. Sun, J. (2007). D-limonene: Safety and clinical applications. Alternative Medicine Review, 12(3), 259–264.

  46. Tondi, G., & Petutschnigg, A. (2015). Middle infrared (ATR FT-MIR) characterization of industrial tannin extracts. Industrial Crops and Products, 65, 422–428.

  47. Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: a review. European Polymer Journal., 47(3), 254–263.

  48. Visanko, M., Sirviö, J., Piltonen, P., Sliz, R., Liimatainen, H., & Illikainen, M. (2017). Mechanical fabrication of high-strength and redispersible wood nanofibers from unbleached groundwood pulp. Cellulose.

  49. Wagh, Y. R., Pushpadass, H. A., Emerald, F. M. E., & Nath, B. S. (2014). Preparation and characterization of milk protein films and their application for packaging of cheddar cheese. Journal of Food Science and Technology., 51(12), 3767–3775.

  50. Wang, T.-L., & Hsieh, T.-H. (1997). Effect of polyol structure and molecular weight on the thermal stability of segmented poly (urethaneureas). Polymer Degradation and Stability., 55(1), 95–102.

  51. Wang, Y., Li, B., & Li, J. (2016a). Nature inspired one step green procedure for enhancing the antibacterial and antioxidant behavior of chitin film: controlled interfacial assembly of tannic acid onto chitin film. Journal of Agricultural and Food Chemistry., 64(28), 5736–5741.

  52. Wang, Y., Xia, Y., Zhang, P., Ye, L., Wu, L., & He, S. (2016b). Physical characterization and pork packaging application of chitosan films incorporated with combined essential oils of cinnamon and ginger. Food and Bioprocess Technology., 10(3), 503–511.

  53. Wu, Y., Lin, Q., Chen, Z., & Xiao, H. (2011). The interaction between tea polyphenols and rice starch during gelatinization. Food Science and Technology International., 17(6), 569–577.

  54. Wu, C., Sun, J., Zheng, P., Kang, X., Chen, M., Li, Y., Ge, Y., Hu, Y., & Pang, J. (2019). Preparation of an intelligent film based on chitosan/oxidized chitin nanocrystals incorporating black rice bran anthocyanins for seafood spoilage monitoring. Carbohydrate Polymers., 222, 115006.

  55. Xia, Y., Cheng, C., Wang, R., Qin, H., Zhang, Y., Ma, L., Tan, H., Gu, Z., & Zhao, C. (2014). Surface-engineered nanogel assemblies with integrated blood compatibility, cell proliferation and antibacterial property: towards multifunctional biomedical membranes. Polymer Chemistry., 5(20), 5906–5919.

  56. Zhang, J., Zou, X., Zhai, X., Huang, X., Jiang, C., & Holmes, M. (2019). Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chemistry., 272, 306–312.

  57. Zhao, G., Lyu, X., Lee, J., Cui, X., & Chen, W.-N. (2019). Biodegradable and transparent cellulose film prepared eco-friendly from durian rind for packaging application. Food Packaging and Shelf Life., 21, 100345.

  58. Zhou, B., Jin, X., Li, J., Xu, W., Liu, S., Li, Y., & Li, B. (2014). Vacuum-assisted layer-by-layer electrospun membranes: antibacterial and antioxidative applications. RSC Advances., 4(97), 54517–54524.

  59. Zhou, B., Hu, X., Zhu, J., Wang, Z., Wang, X., & Wang, M. (2016). Release properties of tannic acid from hydrogen bond driven antioxidative cellulose nanofibrous films. International Journal of Biological Macromolecules., 91, 68–74.

Download references


This study was financially supported by the Food Science and Technology Programme, Nanyang Technological University, Singapore.

Author information

Correspondence to Jaslyn Jie Lin Lee or Wei Ning Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, J.J.L., Cui, X., Chai, K.F. et al. Interfacial Assembly of a Cashew Nut (Anacardium occidentale) Testa Extract onto a Cellulose-Based Film from Sugarcane Bagasse to Produce an Active Packaging Film with pH-Triggered Release Mechanism. Food Bioprocess Technol (2020). https://doi.org/10.1007/s11947-020-02414-z

Download citation


  • Antimicrobial film
  • Active packaging
  • Biodegradable
  • Interfacial assembly
  • Cellulose
  • Cashew nut