Advertisement

Physicochemical, Nutritional, and Stability Aspects of a Meat Product (gluteus medius) Enriched with Encapsulated Fish Oil in Polyelectrolyte Beads Containing Prosopis alba Exudate Gum

  • Franco Emanuel VasileEmail author
  • Ana María Romero
  • María Alicia Judis
  • María Florencia Mazzobre
Original Paper
  • 27 Downloads

Abstract

This work explores the physicochemical, nutritional, and stability aspects of a meat product enriched with fish oil encapsulated in polyelectrolyte beads. Particularly, a non-conventional exudate gum obtained from Prosopis alba tree (G) was assessed as wall component of alginate-chitosan beads. Patty-type products based on beef (gluteus medius) and pork back fat (P) were nutritionally improved by adding free fish oil (P+FO), fish oil encapsulated in alginate-chitosan (P+ACh), or alginate-gum-chitosan (P+AChG) beads. In enriched raw products, the EPA+DHA content was increased 13 folds, and the n3/n6 ratio was 45–55% higher than control. During cooking, the encapsulates increased the oil retention (91 to 94%) respect to samples added with free oil (84%), and modulated the chromatic (∆E = 1.5–1.9) and textural properties (hardness was increased 10–50%; elasticity was reduced 40%) of the cooked meat products. In presence of G, polyunsaturated fatty acids retention was higher (99%) than in P+ACh (95%) or in P+FO (94%). Additionally, P+AChG showed the lowest oxidative damage (TBA value was 50% lower than P+FO) at the end of freeze storage (90 days at − 18 °C) and subsequent heat treatment (15 min at 200 °C). Present results showed that Prosopis alba exudate gum emerges as a novel and useful excipient for the development of polyelectrolyte encapsulation systems able to protect functional lipids in meat-based products.

Keywords

Prosopis alba exudate gum Polyelectrolyte beads Fish oil encapsulation Meat product Oxidative stability 

Notes

Funding Information

The authors are grateful to Universidad Nacional del Chaco Austral – Argentina (UNCAUS – PI N° 37), Universidad de Buenos Aires – Argentina (UBACYT N° 00443BA and N° 00557BA), Agencia Nacional de Promoción Científica y Tecnológica – Argentina (ANPCyT, PICT-2013-1331 and PICT-2017-1744), and Consejo Nacional de Investigaciones Científicas y Técnicas – Argentina (CIN-CONICET PDTS 2015 N° 196) for the financial support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Aghbashlo, M., Mobli, H., Madadlou, A., & Rafiee, S. (2012). The correlation of wall material composition with flow characteristics and encapsulation behavior of fish oil emulsion. Food Research International., 49(1), 379–388.CrossRefGoogle Scholar
  2. Akhtar, M. J., Jacquot, M., Arab-Tehrany, E., Gaïani, C., Linder, M., & Desobry, S. (2010). Control of salmon oil photo-oxidation during storage in HPMC packaging film: influence of film colour. Food Chemistry, 120(2), 395–401.CrossRefGoogle Scholar
  3. Akwetey, W. Y., & Knipe, C. L. (2012). Sensory attributes and texture profile of beef burgers with gari. Meat Science., 92(4), 745–748.CrossRefGoogle Scholar
  4. Ansorena, D., & Astiasarán, I. (2013). 10 - enrichment of meat products with omega-3 fatty acids by methods other than modification of animal diet. In C. Jacobsen, N. S. Nielsen, A. F. Horn, & A.-D. M. Sørensen (Eds.), Food enrichment with omega-3 fatty acids (pp. 299–318). Woodhead Publishing.Google Scholar
  5. AOAC (1984) Official methods of analysis of the association of official analytical chemists. Acid hydrolysis Method Cd 14.019. Arlington, VA.Google Scholar
  6. Arab-Tehrany, E., Jacquot, M., Gaiani, C., Imran, M., Desobry, S., & Linder, M. (2012). Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends in Food Science & Technology., 25(1), 24–33.CrossRefGoogle Scholar
  7. Berdeaux, O., Marmesat, S., Velasco, J., & Dobarganes, M. C. (2012). Apparent and quantitative loss of fatty acids and triacylglycerols at frying temperatures. Grasas y Aceites., 63(3), 284–289.CrossRefGoogle Scholar
  8. Beriain, M. J., Gómez, I., Ibáñez, F. C., Sarriés, M. V., & Ordóñez, A. I. (2018). Improvement of the functional and healthy properties of meat products. Food Quality: Balancing Health and Disease., 13, 1.Google Scholar
  9. Bilek, A. E., & Turhan, S. (2009). Enhancement of the nutritional status of beef patties by adding flaxseed flour. Meat Science., 82(4), 472–477.CrossRefGoogle Scholar
  10. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology., 37(8), 911–917.CrossRefGoogle Scholar
  11. Bourne, M. C. (1978). Texture profile analysis. Food Technology, 32, 62–66.Google Scholar
  12. Chan, A. W., & Neufeld, R. J. (2009). Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials. Biomaterials, 30(30), 6119–6129.CrossRefGoogle Scholar
  13. Drusch, S., & Mannino, S. (2009). Patent-based review on industrial approaches for the microencapsulation of oils rich in polyunsaturated fatty acids. Trends in Food Science & Technology., 20(6–7), 237–244.CrossRefGoogle Scholar
  14. EFSA Panel on Dietetic Products N & Allergies (2010) Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA Journal 8(3), 1461.Google Scholar
  15. Feiner, G. (2006). Meat products handbook: practical science and technology. Amsterdam: Elsevier.Google Scholar
  16. Garti, N., & McClements, D. J. (2012). Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Amsterdam: Elsevier.CrossRefGoogle Scholar
  17. Gaurav, S. (2003). Digital color imaging handbook. Boca Raton: CRC Press.Google Scholar
  18. Heck, R. T., Vendruscolo, R. G., de Araújo Etchepare, M., Cichoski, A. J., de Menezes, C. R., Barin, J. S., Lorenzo, J. M., Wagner, R., & Campagnol, P. C. B. (2017). Is it possible to produce a low-fat burger with a healthy n−6/n−3 PUFA ratio without affecting the technological and sensory properties? Meat Science., 130(Supplement C), 16–25.CrossRefGoogle Scholar
  19. IDF. (1991). Anhydrous milk fat, determination 642 of peroxide value. Brussels, Belgium: International Dairy Federation.Google Scholar
  20. Jiménez-Colmenero, F. (2007). Healthier lipid formulation approaches in meat-based functional foods. Technological options for replacement of meat fats by non-meat fats. Trends in Food Science & Technology., 18(11), 567–578.CrossRefGoogle Scholar
  21. Keenan, D. F., Resconi, V. C., Smyth, T. J., Botinestean, C., Lefranc, C., Kerry, J. P., & Hamill, R. M. (2015). The effect of partial-fat substitutions with encapsulated and unencapsulated fish oils on the technological and eating quality of beef burgers over storage. Meat Science., 107(Supplement C), 75–85.CrossRefGoogle Scholar
  22. Klurfeld, D. M. (2015). Research gaps in evaluating the relationship of meat and health. Meat science., 109, 86–95.CrossRefGoogle Scholar
  23. Kris-Etherton, P. M., Grieger, J. A., & Etherton, T. D. (2009). Dietary reference intakes for DHA and EPA. Prostaglandins, Leukotrienes and Essential Fatty Acids., 81(2), 99–104.CrossRefGoogle Scholar
  24. Miklos, R., Xu, X., & Lametsch, R. (2011). Application of pork fat diacylglycerols in meat emulsions. Meat Science., 87(3), 202–205.CrossRefGoogle Scholar
  25. Olmedilla-Alonso, B., Jiménez-Colmenero, F., & Sánchez-Muniz, F. J. (2013). Development and assessment of healthy properties of meat and meat products designed as functional foods. Meat Science., 95(4), 919–930.CrossRefGoogle Scholar
  26. Pelser, W. M., Linssen, J. P., Legger, A., & Houben, J. H. (2007). Lipid oxidation in n− 3 fatty acid enriched Dutch style fermented sausages. Meat Science., 75(1), 1–11.CrossRefGoogle Scholar
  27. Polavarapu, S., Oliver, C. M., Ajlouni, S., & Augustin, M. A. (2011). Physicochemical characterisation and oxidative stability of fish oil and fish oil–extra virgin olive oil microencapsulated by sugar beet pectin. Food Chemistry, 127(4), 1694–1705.CrossRefGoogle Scholar
  28. Praagman, J., Beulens, J. W., Alssema, M., Zock, P. L., Wanders, A. J., Sluijs, I., & Van Der Schouw, Y. T. (2016). The association between dietary saturated fatty acids and ischemic heart disease depends on the type and source of fatty acid in the European Prospective Investigation into Cancer and Nutrition–Netherlands cohort, 2. The American Journal of Clinical Nutrition, 103(2), 356–365.CrossRefGoogle Scholar
  29. Rayment, P., Wright, P., Hoad, C., Ciampi, E., Haydock, D., Gowland, P., & Butler, M. F. (2009). Investigation of alginate beads for gastro-intestinal functionality, part 1: in vitro characterisation. Food Hydrocolloids, 23(3), 816–822.CrossRefGoogle Scholar
  30. Salcedo-Sandoval, L., Cofrades, S., Ruiz-Capillas, C., & Jiménez-Colmenero, F. (2015a). Filled hydrogel particles as a delivery system for n−3 long chain PUFA in low-fat frankfurters: consequences for product characteristics with special reference to lipid oxidation. Meat Science., 110(Supplement C), 160–168.CrossRefGoogle Scholar
  31. Salcedo-Sandoval, L., Cofrades, S., Ruiz-Capillas, C., Matalanis, A., McClements, D. J., Decker, E. A., & Jiménez-Colmenero, F. (2015b). Oxidative stability of n-3 fatty acids encapsulated in filled hydrogel particles and of pork meat systems containing them. Food Chemistry., 184, 207–213.CrossRefGoogle Scholar
  32. Scheeder, M. R. L., Casutt, M. M., Roulin, M., Escher, F., Dufey, P. A., & Kreuzer, M. (2001). Fatty acid composition, cooking loss and texture of beef patties from meat of bulls fed different fats. Meat Science., 58(3), 321–328.CrossRefGoogle Scholar
  33. Shahidi F & Zhong Y (2005) Lipid oxidation: measurement methods. Bailey's industrial oil and fat products. John Wiley & Sons, Inc.Google Scholar
  34. Valencia, I., O’Grady, M., Ansorena, D., Astiasaran, I., & Kerry, J. (2008). Enhancement of the nutritional status and quality of fresh pork sausages following the addition of linseed oil, fish oil and natural antioxidants. Meat Science., 80(4), 1046–1054.CrossRefGoogle Scholar
  35. Vasile, F. E., Martinez, M. J., Ruiz-Henestrosa, V. M. P., Judis, M. A., & Mazzobre, M. F. (2016a). Physicochemical, interfacial and emulsifying properties of a non-conventional exudate gum (Prosopis alba) in comparison with gum arabic. Food Hydrocolloids, 56, 245–253.CrossRefGoogle Scholar
  36. Vasile, F. E., Romero, A. M., Judis, M. A., & Mazzobre, M. F. (2016b). Prosopis alba exudate gum as excipient for improving fish oil stability in alginate–chitosan beads. Food Chemistry., 190, 1093–1101.CrossRefGoogle Scholar
  37. Vasile, F. E., Judis, M. A., & Mazzobre, M. F. (2017). Prosopis alba exudate gum as novel excipient for fish oil encapsulation in polyelectrolyte bead system. Carbohydrate Polymers., 166, 309–319.CrossRefGoogle Scholar
  38. Vasile, F. E., Judis, M. A., & Mazzobre, M. F. (2018). Impact of Prosopis alba exudate gum on sorption properties and physical stability of fish oil alginate beads prepared by ionic gelation. Food Chemistry., 250, 75–82.CrossRefGoogle Scholar
  39. Wang, W., Waterhouse, G. I., & Sun-Waterhouse, D. (2013). Co-extrusion encapsulation of canola oil with alginate: effect of quercetin addition to oil core and pectin addition to alginate shell on oil stability. Food Research International., 54(1), 837–851.CrossRefGoogle Scholar
  40. Yang, J., & Ciftci, O. N. (2017). Encapsulation of fish oil into hollow solid lipid micro- and nanoparticles using carbon dioxide. Food Chemistry., 231, 105–113.CrossRefGoogle Scholar
  41. Yi, H. C., Cho, H., Hong, J. J., Ryu, R. K., Hwang, K. T., & Regenstein, J. M. (2012). Physicochemical and organoleptic characteristics of seasoned beef patties with added glutinous rice flour. Meat Science., 92(4), 464–468.CrossRefGoogle Scholar
  42. Youssef, M. K., & Barbut, S. (2011). Fat reduction in comminuted meat products-effects of beef fat, regular and pre-emulsified canola oil. Meat Science, 87(4), 356–360.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratorio de Industrias Alimentarias IIUniversidad Nacional del Chaco AustralPresidencia Roque Sáenz PeñaArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Laboratorio de Propiedades y Conservación de Biomoléculas, Departamento de Industrias, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations