Advertisement

Rheological, Textural, Physicochemical and Sensory Profiling of a Novel Functional Ice Cream Enriched with Muscat de Hamburg (Vitis vinifera L.) Grape Pulp and Skins

  • Maria Tsevdou
  • Eugenio Aprea
  • Emanuella Betta
  • Iuliia Khomenko
  • Daniel Molitor
  • Franco Biasioli
  • Claire Gaiani
  • Flavia Gasperi
  • Petros Taoukis
  • Christos SoukoulisEmail author
Original Paper
  • 38 Downloads

Abstract

The scope of the present work was the development of an ice cream containing substantial amount of phenolic compounds by substituting sucrose by a Muscat de Hamburg grape pulp and skin matter (GPSM)-enriched bulking agent at the level of 25 to 100% w/w. Sucrose replacement by GPSM reinforced the pseudoplastic and thixotropic character of the ice cream mixes imparting weak gel-like properties (G′ > G′′). Oscillatory thermo-mechanical analysis revealed the occurrence of a β-relaxation peak at − 17 to − 12.8 °C, whilst a slight depression of the freezing point was observed. The increase in GPSM solids resulted in a significant increase in the instrumental hardness and overrun of ice cream samples, whilst it enhanced their meltdown resistance. Although GPSM boosted the nutritional value and flavour profile of the ice cream, when sucrose substitution exceeded 50%, undesirable sensory characteristics, such as coarse/grainy texture, bitterness and astringency, were detected.

Keywords

Functional dairy products Polyphenols Rheology Texture Sensory quality Flavour profile Grape 

Notes

Acknowledgments

Mrs. Marilena Prountzou (Elton Chemicals, Greece) is thankfully acknowledged for generously providing the emulsifying and stabilising agents. The authors, furthermore, thank the team of the Enological laboratory of the Institute Viti-vinicole in Remich/Luxembourg for the HPLC analyses of the GPSM.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Amador, J., Hartel, R., & Rankin, S. (2017). The effects of fat structures and ice cream mix viscosity on physical and sensory properties of ice cream. Journal of Food Science, 82(8), 1851–1860.  https://doi.org/10.1111/1750-3841.13780.CrossRefPubMedGoogle Scholar
  2. Amaral, G. V., Silva, E. K., Cavalcanti, R. N., Martins, C. P. C., Andrade, L. G. Z. S., Moraes, J., Alvarenga, V. O., Guimarães, J. T., Esmerino, E. A., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Sant' Ana, A. S., Meireles, M. A. A., & Cruz, A. G. (2018). Whey-grape juice drink processed by supercritical carbon dioxide technology: physicochemical characteristics, bioactive compounds and volatile profile. Food Chemistry, 239, 697–703.  https://doi.org/10.1016/j.foodchem.2017.07.003.CrossRefPubMedGoogle Scholar
  3. Aubert, C., & Chalot, G. (2018). Chemical composition, bioactive compounds, and volatiles of six table grape varieties (Vitis vinifera L.). Food Chemistry, 240, 524–533.  https://doi.org/10.1016/j.foodchem.2017.07.152.CrossRefPubMedGoogle Scholar
  4. Bahramparvar, M., & Tehrani, M. M. (2011). Application and functions of stabilizers in ice cream. Food Reviews International, 27(4), 389–407.  https://doi.org/10.1080/87559129.2011.563399.CrossRefGoogle Scholar
  5. Balthazar, C. F., Silva, H. L. A., Esmerino, E. A., Rocha, R. S., Moraes, J., Carmo, M. A. V., Azevedo, L., Camps, I., K.D Abud, Y., Sant'Anna, C., Franco, R. M., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Escher, G. B., Granato, D., Senaka Ranadheera, C., Nazarro, F., & Cruz, A. G. (2018). The addition of inulin and Lactobacillus casei 01 in sheep milk ice cream. Food Chemistry, 246, 464–472.  https://doi.org/10.1016/j.foodchem.2017.12.002.CrossRefPubMedGoogle Scholar
  6. Benozzi, E., Romano, A., Capozzi, V., Makhoul, S., Cappellin, L., Khomenko, I., et al. (2015). Monitoring of lactic fermentation driven by different starter cultures via direct injection mass spectrometric analysis of flavour-related volatile compounds. Food Research International, 76(Part 3), 682–688.  https://doi.org/10.1016/j.foodres.2015.07.043.CrossRefPubMedGoogle Scholar
  7. Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70–76.  https://doi.org/10.1006/abio.1996.0292.CrossRefPubMedGoogle Scholar
  8. Besle, J. M., Viala, D., Martin, B., Pradel, P., Meunier, B., Berdagué, J. L., Fraisse, D., Lamaison, J. L., & Coulon, J. B. (2010). Ultraviolet-absorbing compounds in milk are related to forage polyphenols. Journal of Dairy Science, 93(7), 2846–2856.  https://doi.org/10.3168/jds.2009-2939.CrossRefPubMedGoogle Scholar
  9. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30.  https://doi.org/10.1016/S0023-6438(95)80008-5.CrossRefGoogle Scholar
  10. Broadhurst, R. B., & Jones, W. T. (1978). Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture, 29(9), 788–794.  https://doi.org/10.1002/jsfa.2740290908.CrossRefGoogle Scholar
  11. Cappellin, L., Biasioli, F., Granitto, P. M., Schuhfried, E., Soukoulis, C., Costa, F., Märk, T. D., & Gasperi, F. (2011). On data analysis in PTR-TOF-MS: from raw spectra to data mining. Sensors and Actuators B: Chemical, 155(1), 183–190.  https://doi.org/10.1016/j.snb.2010.11.044.CrossRefGoogle Scholar
  12. Chen, J., & Eaton, L. (2012). Multimodal mechanisms of food creaminess sensation. Food & Function, 3(12), 1265–1270.  https://doi.org/10.1039/C2FO30116D.CrossRefGoogle Scholar
  13. Cook, K. L. K., & Hartel, R. W. (2010). Mechanisms of ice crystallization in ice cream production. Comprehensive Reviews in Food Science and Food Safety, 9(2), 213–222.  https://doi.org/10.1111/j.1541-4337.2009.00101.x.CrossRefGoogle Scholar
  14. da Silva, V. M., Minim, V. P. R., Ferreira, M. A. M., Souza, P. H. d. P., Moraes, L. E. d. S., & Minim, L. A. (2014). Study of the perception of consumers in relation to different ice cream concepts. Food Quality and Preference, 36, 161–168.  https://doi.org/10.1016/j.foodqual.2014.04.008.CrossRefGoogle Scholar
  15. Daw, E., & Hartel, R. W. (2015). Fat destabilization and melt-down of ice creams with increased protein content. International Dairy Journal, 43, 33–41.  https://doi.org/10.1016/j.idairyj.2014.12.001.CrossRefGoogle Scholar
  16. Fenoll, J., Manso, A., Hellín, P., Ruiz, L., & Flores, P. (2009). Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chemistry, 114(2), 420–428.  https://doi.org/10.1016/j.foodchem.2008.09.060.CrossRefGoogle Scholar
  17. Frøst, M. B., & Janhøj, T. (2007). Understanding creaminess. International Dairy Journal, 17(11), 1298–1311.  https://doi.org/10.1016/j.idairyj.2007.02.007.CrossRefGoogle Scholar
  18. Gibbins, H. L., & Carpenter, G. H. (2013). Alternative mechanisms of astringency—what is the role of saliva? Journal of Texture Studies, 44(5), 364–375.  https://doi.org/10.1111/jtxs.12022.CrossRefGoogle Scholar
  19. Goff, H. D., & Hartel, R. W. (2013). Ice cream (7th ed.). New York: Springer.  https://doi.org/10.1007/978-1-4614-6096-1_11.CrossRefGoogle Scholar
  20. Grażyna, C., Hanna, C., Adam, A., & Magdalena, B. M. (2017). Natural antioxidants in milk and dairy products. International Journal of Dairy Technology, 70(2), 165–178.  https://doi.org/10.1111/1471-0307.12359.CrossRefGoogle Scholar
  21. Hagiwara, T., & Hartel, R. W. (1996). Effect of sweetener, stabilizer, and storage temperature on ice recrystallization in ice cream. Journal of Dairy Science, 79(5), 735–744.  https://doi.org/10.3168/jds.S0022-0302(96)76420-2.CrossRefGoogle Scholar
  22. Hwang, J.-Y., Shyu, Y.-S., & Hsu, C.-K. (2009). Grape wine lees improves the rheological and adds antioxidant properties to ice cream. LWT - Food Science and Technology, 42(1), 312–318.  https://doi.org/10.1016/j.lwt.2008.03.008.CrossRefGoogle Scholar
  23. Kanta, A., Soukoulis, C., & Tzia, C. (2018). Eliciting the sensory modalities of fat reformulated yoghurt ice cream using oligosaccharides. Food and Bioprocess Technology, 11(4), 885–900.  https://doi.org/10.1007/s11947-018-2064-y.CrossRefGoogle Scholar
  24. Karaman, S., Toker, Ö. S., Yüksel, F., Çam, M., Kayacier, A., & Dogan, M. (2014). Physicochemical, bioactive, and sensory properties of persimmon-based ice cream: technique for order preference by similarity to ideal solution to determine optimum concentration. Journal of Dairy Science, 97(1), 97–110.  https://doi.org/10.3168/jds.2013-7111.CrossRefPubMedGoogle Scholar
  25. Lachman, J., Šulc, M., Faitová, K., & Pivec, V. (2009). Major factors influencing antioxidant contents and antioxidant activity in grapes and wines. International Journal of Wine Research, 1, 101–120.  https://doi.org/10.2147/IJWR.S4600.CrossRefGoogle Scholar
  26. Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release—a review. International Journal of Food Science & Technology, 41(1), 1–21.  https://doi.org/10.1111/j.1365-2621.2005.00980.x.CrossRefGoogle Scholar
  27. Mezger, T. (2014). The rheology handbook: for users of rotational and oscillatory rheometers (4th ed.). Vincentz Network.Google Scholar
  28. Muse, M. R., & Hartel, R. W. (2004). Ice cream structural elements that affect melting rate and hardness. Journal of Dairy Science, 87(1), 1–10.  https://doi.org/10.3168/jds.S0022-0302(04)73135-5.CrossRefPubMedGoogle Scholar
  29. O’Brien Nabors, L. (2012). Alternative sweeteners, Fourth Edition (4th ed.). Boca Raton: CRC Press, Taylor and Francis.Google Scholar
  30. Oliveira, A., Alexandre, E. M. C., Coelho, M., Lopes, C., Almeida, D. P. F., & Pintado, M. (2015). Incorporation of strawberries preparation in yoghurt: impact on phytochemicals and milk proteins. Food Chemistry, 171(Supplement C), 370–378.  https://doi.org/10.1016/j.foodchem.2014.08.107.CrossRefPubMedGoogle Scholar
  31. Pękal, A., & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7(9), 1776–1782.  https://doi.org/10.1007/s12161-014-9814-x.CrossRefGoogle Scholar
  32. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231–1237.  https://doi.org/10.1016/S0891-5849(98)00315-3.CrossRefPubMedGoogle Scholar
  33. Regand, A., & Goff, H. D. (2003). Structure and ice recrystallization in frozen stabilized ice cream model systems. Food Hydrocolloids, 17(1), 95–102.  https://doi.org/10.1016/S0268-005X(02)00042-5.CrossRefGoogle Scholar
  34. Rolle, L., Torchio, F., Giacosa, S., & Río Segade, S. (2015). Berry density and size as factors related to the physicochemical characteristics of Muscat Hamburg table grapes (Vitis vinifera L.). Food Chemistry, 173, 105–113.  https://doi.org/10.1016/j.foodchem.2014.10.033.CrossRefPubMedGoogle Scholar
  35. Sahagian, M. E., & Goff, H. D. (1995). Thermal, mechanical and molecular relaxation properties of stabilized sucrose solutions at sub-zero temperatures. Food Research International, 28(1), 1–8.  https://doi.org/10.1016/0963-9969(95)93324-N.CrossRefGoogle Scholar
  36. Sato, Y., & Miyawaki, O. (2016). Analysis of hydration parameter for sugars determined from viscosity and its relationship with solution parameters. Food Chemistry, 190, 594–598.  https://doi.org/10.1016/j.foodchem.2015.05.119.CrossRefPubMedGoogle Scholar
  37. Soukoulis, C., & Fisk, I. (2016). Innovative ingredients and emerging technologies for controlling ice recrystallization, texture, and structure stability in frozen dairy desserts: a review. Critical Reviews in Food Science and Nutrition, 56(15), 2543–2559.  https://doi.org/10.1080/10408398.2013.876385.CrossRefPubMedGoogle Scholar
  38. Soukoulis, C., & Tzia, C. (2018). Grape, raisin and sugarcane molasses as potential partial sucrose substitutes in chocolate ice cream: a feasibility study. International Dairy Journal, 76, 18–29.  https://doi.org/10.1016/j.idairyj.2017.08.004.CrossRefGoogle Scholar
  39. Soukoulis, C., Chandrinos, I., & Tzia, C. (2008). Study of the functionality of selected hydrocolloids and their blends with κ-carrageenan on storage quality of vanilla ice cream. LWT - Food Science and Technology, 41(10), 1816–1827.  https://doi.org/10.1016/j.lwt.2007.12.009.CrossRefGoogle Scholar
  40. Soukoulis, C., Rontogianni, E., & Tzia, C. (2010). Contribution of thermal, rheological and physical measurements to the determination of sensorially perceived quality of ice cream containing bulk sweeteners. Journal of Food Engineering, 100(4), 634–641.  https://doi.org/10.1016/j.jfoodeng.2010.05.012.CrossRefGoogle Scholar
  41. Soukoulis, C., Biasioli, F., Aprea, E., Schuhfried, E., Cappellin, L., Märk, T. D., & Gasperi, F. (2012). PTR-TOF-MS analysis for influence of milk base supplementation on texture and headspace concentration of endogenous volatile compounds in yogurt. Food and Bioprocess Technology, 5(6), 2085–2097.  https://doi.org/10.1007/s11947-010-0487-1.CrossRefGoogle Scholar
  42. Soukoulis, C., Cappellin, L., Aprea, E., Costa, F., Viola, R., Märk, T. D., Gasperi, F., & Biasioli, F. (2013). PTR-ToF-MS, a novel, rapid, high sensitivity and non-invasive tool to monitor volatile compound release during fruit post-harvest storage: the case study of apple ripening. Food and Bioprocess Technology, 6(10), 2831–2843.  https://doi.org/10.1007/s11947-012-0930-6.CrossRefGoogle Scholar
  43. Soukoulis, C., Fisk, I. D., & Bohn, T. (2014). Ice cream as a vehicle for incorporating health-promoting ingredients: conceptualization and overview of quality and storage stability. Comprehensive Reviews in Food Science and Food Safety, 13(4), 627–655.  https://doi.org/10.1111/1541-4337.12083.CrossRefGoogle Scholar
  44. Soukoulis, C., Cambier, S., Hoffmann, L., & Bohn, T. (2016). Chemical stability and bioaccessibility of β-carotene encapsulated in sodium alginate o/w emulsions: impact of Ca2+ mediated gelation. Food Hydrocolloids, 57, 301–310.  https://doi.org/10.1016/j.foodhyd.2016.02.001.CrossRefGoogle Scholar
  45. Sun-Waterhouse, D., Edmonds, L., Wadhwa, S. S., & Wibisono, R. (2013). Producing ice cream using a substantial amount of juice from kiwifruit with green, gold or red flesh. Food Research International, 50(2), 647–656.  https://doi.org/10.1016/j.foodres.2011.05.030.CrossRefGoogle Scholar
  46. Varela, P., Pintor, A., & Fiszman, S. (2014). How hydrocolloids affect the temporal oral perception of ice cream. Food Hydrocolloids, 36, 220–228.  https://doi.org/10.1016/j.foodhyd.2013.10.005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Maria Tsevdou
    • 1
  • Eugenio Aprea
    • 2
  • Emanuella Betta
    • 2
  • Iuliia Khomenko
    • 2
  • Daniel Molitor
    • 3
  • Franco Biasioli
    • 2
  • Claire Gaiani
    • 4
  • Flavia Gasperi
    • 2
  • Petros Taoukis
    • 1
  • Christos Soukoulis
    • 3
    Email author
  1. 1.Laboratory of Food Chemistry and Technology, School of Chemical EngineeringNational Technical University of Athens (NTUA)AthensGreece
  2. 2.Department of Food Quality and Nutrition, Research and Innovation CentreFondazione Edmund MachSan Michele all’AdigeItaly
  3. 3.Environment and Research Innovation (ERIN) DepartmentLuxembourg Institute of Science and Technology (LIST)Esch-sur-AlzetteLuxembourg
  4. 4.LIBio, Laboratoire d’Ingénierie des BiomoléculesUniversité de LorraineVandoeuvre lès NancyFrance

Personalised recommendations