Impact of the Pretreatment of Grains on the Interparticle Porosity of Feed Material and the Torque Supplied During the Extrusion of Brown Rice

  • Jhony Willian Vargas-SolórzanoEmail author
  • José Luis Ramírez Ascheri
  • Carlos Wanderlei Piler Carvalho
  • Cristina Yoshie Takeiti
  • Melicia Cintia Galdeano
Original Paper


The objective of this work was to evaluate the effects of drying, grinder type, and moistening conditions on the interparticle porosity of feed material and the torque supplied to the screw during the single-screw extrusion processing of brown rice. The grains were dried at 60 °C up to moisture contents of 9 and 6% and then milled using two grinder types (disc and roller). The milled products were moistened at levels to produce extruded snacks (11 and 14%). Irrespective of drying the grains, lower particle diameters in the fine and coarse fractions, and narrower distributions were obtained by grinding brown rice in a roller mill than in a disc mill. The disc mill products presented lower interparticle porosity and generated higher torque values than the roller mill products. A reduction in grain moisture from 9 to 6% only decreased the interparticle porosity of disc mill products and increased the torque. An increase in feed moisture from 11 to 14% only increased the interparticle porosity of roller mill products and decreased the torque regardless of grain moisture. This work contributed to understanding the impact of the morphology of the particles in the torque variability during the extrusion processing of brown rice. Few published works correlate physical properties of the feed material with extrusion dependent variables. In the present study, feed materials with high interparticle porosity were produced with roller mill and when extruded they generated low variabilities in the torque.


Whole grain Particle-size distribution Mill type Particulate food Food extrusion 



The authors thank to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Concelho Nacional de Desenvolvimento Científico e Tecnológico), and FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro) for their generous support of this work.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Akdogan, H. (1996). Pressure, torque, and energy responses of a twin screw extruder at high moisture contents. Food Research International, 29(5), 423–429.CrossRefGoogle Scholar
  2. Alam, S. A., Järvinen, J., Kirjoranta, S., Jouppila, K., Poutanen, K., & Sozer, N. (2014). Influence of particle size reduction on structural and mechanical properties of extruded rye bran. Food and Bioprocess Technology, 7(7), 2121–2133.CrossRefGoogle Scholar
  3. AOAC. (2005). Official methods of analysis of AOAC International (18th ed.). Gaithersburg: AOAC International.Google Scholar
  4. Badmus, A. A., Raji, A. O., & Akinoso, R. (2013). Effect of process parameters on work index, milling efficiency and some technological properties of yam flour using attrition mill. Food and Bioprocess Technology, 6(1), 160–168.CrossRefGoogle Scholar
  5. Bala, B. K. (2017). Principles of drying. In B. K. Bala (Ed.), Drying and storage of cereal grains (2nd ed., pp. 1–3). Chichester: Wiley Blackwell.Google Scholar
  6. Barbosa-Cánovas, G. V., & Juliano, P. (2005). Physical and chemical properties of food powders. In C. Onwulata (Ed.), Encapsulated and powdered foods (pp. 39–71). Boca Raton: CRC Press.CrossRefGoogle Scholar
  7. Barbosa-Cánovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. (2005). Size reduction. In Food powders: physical properties, processing, and functionality (pp. 157–173). Boston: Springer US.Google Scholar
  8. Baudelaire, E. D. (2013). Grinding for food powder production. In B. Bhandari, N. Bansal, M. Zhang, & P. Schuck (Eds.), Handbook of food powders (pp. 132–149). Cambridge: Woodhead Publishing.CrossRefGoogle Scholar
  9. Becker, A., Hill, S. E., & Mitchell, J. R. (2001). Milling—A Further Parameter Affecting the Rapid Visco Analyser (RVA) Profile. Cereal Chemistry, 78(2), 166–172.CrossRefGoogle Scholar
  10. Bootkote, P., Soponronnarit, S., & Prachayawarakorn, S. (2016). Process of Producing Parboiled Rice with Different Colors by Fluidized Bed Drying Technique Including Tempering. Food and Bioprocess Technology, 9(9), 1574–1586.CrossRefGoogle Scholar
  11. Bouvier, J.-M., & Campanella, O. H. (2014). Quality analysis of extrusion-textured food products. In Extrusion Processing Technology (pp. 311–349). Chichester: John Wiley & Sons, Ltd..CrossRefGoogle Scholar
  12. Chen, H. H. (2014). Investigation of properties of long-grain brown rice treated by low-pressure plasma. Food and Bioprocess Technology, 7(9), 2484–2491.CrossRefGoogle Scholar
  13. Cisneros, F. H., & Kokini, J. L. (2002). A generalized theory linking barrel fill length and air bubble entrapment during extrusion of starch. Journal of Food Engineering, 51(2), 139–149.CrossRefGoogle Scholar
  14. Ding, Q.-B., Ainsworth, P., Tucker, G., & Marson, H. (2005). The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. Journal of Food Engineering, 66(3), 283–289.CrossRefGoogle Scholar
  15. Ding, C., Khir, R., Pan, Z., Zhao, L., Tu, K., El-Mashad, H., et al. (2015). Improvement in Shelf Life of Rough and Brown Rice Using Infrared Radiation Heating. Food and Bioprocess Technology, 8(5), 1149–1159.CrossRefGoogle Scholar
  16. Dodds, J. (2013). Techniques to analyse particle size of food powders. In B. Bhandari, N. Bansal, M. Zhang, & P. Schuck (Eds.), Handbook of Food Powders (pp. 309–338). Cambridge: Woodhead Publishing.CrossRefGoogle Scholar
  17. Fitzgerald, M. (2004). Starch. In, Rice: chemistry and technology Grain Science References(3rd, pp. 109-141): American Association of Cereal Chemists, Inc.Google Scholar
  18. González, R. J., Pastor Cavada, E., Vioque Peña, J., Torres, R. L., De Greef, D. M., & Drago, S. R. (2013). Extrusion Conditions and Amylose Content Affect Physicochemical Properties of Extrudates Obtained from Brown Rice Grains. International Journal of Food Science, 2013, 8.CrossRefGoogle Scholar
  19. Gujral, H. S., Sharma, P., Kumar, A., & Singh, B. (2012). Total phenolic content and antioxidant activity of extruded brown rice. International Journal of Food Properties, 15(2), 301–311.CrossRefGoogle Scholar
  20. Hickey, A. J. & Giovagnoli, S. (2018). Powder and particle-dependent traditional manufacturing processes (Unit Operations). In, Pharmaceutical Powder and Particles, pp. 61-71). Cham: Springer International Publishing.Google Scholar
  21. Hourston, J. E., Ignatz, M., Reith, M., Leubner-Metzger, G. & Steinbrecher, T. (2017). Biomechanical properties of wheat grains: the implications on milling. Journal of The Royal Society Interface, 14(126).Google Scholar
  22. Huang, M.-s., Zhang, M., & Bhandari, B. (2019). Assessing the 3D Printing Precision and Texture Properties of Brown Rice Induced by Infill Levels and Printing Variables. Food and Bioprocess Technology, 12(7), 1185–1196.CrossRefGoogle Scholar
  23. Joshi, N. D., Mohapatra, D., & Joshi, D. C. (2014). Varietal Selection of Some Indica Rice for Production of Puffed Rice. Food and Bioprocess Technology, 7(1), 299–305.CrossRefGoogle Scholar
  24. Juliano, B. O. (1985). Rice properties and processing. Food Reviews International, 1(3), 423–445.CrossRefGoogle Scholar
  25. Kim, M. Y., Lee, S. H., Jang, G. Y., Li, M., Lee, Y. R., Lee, J., et al. (2015). Influence of Applied Pressure on Bioactive Compounds of Germinated Rough Rice (Oryza sativa L.). Food and Bioprocess Technology, 8(10), 2176–2181.CrossRefGoogle Scholar
  26. Ma, J., Kaori, F., Ma, L., Gao, M., Dong, C., Wang, J., et al. (2019). The effects of extruded black rice flour on rheological and structural properties of wheat-based dough and bread quality. International Journal of Food Science and Technology, 54(5), 1729–1740.CrossRefGoogle Scholar
  27. Marousis, S. N., & Saravacos, G. D. (1990). Density and Porosity in Drying Starch Materials. Journal of Food Science, 55(5), 1367–1372.CrossRefGoogle Scholar
  28. Marti, A., Seetharaman, K., & Pagani, M. A. (2010). Rice-based pasta: a comparison between conventional pasta-making and extrusion-cooking. Journal of Cereal Science, 52(3), 404–409.CrossRefGoogle Scholar
  29. Mathew, J. M., Hoseney, R. C., & Faubion, J. M. (1999). Effects of corn sample, mill type, and particle size on corn curl and pet food extrudates. Cereal Chemistry, 76(5), 621–624.CrossRefGoogle Scholar
  30. Montgomery, D. C. (2013a). The 2k factorial design. In Design and analysis of experiments (8th ed., pp. 233–303). Hoboken: Wiley.Google Scholar
  31. Montgomery, D. C. (2013b). Fitting regression models. In Design and analysis of experiments (8th ed., pp. 449–477). Hoboken: Wiley.Google Scholar
  32. O’Shea, N., Arendt, E., & Gallagher, E. (2014). Enhancing an Extruded Puffed Snack by Optimising Die Head Temperature, Screw Speed and Apple Pomace Inclusion. Food and Bioprocess Technology, 7(6), 1767–1782.CrossRefGoogle Scholar
  33. Ohtsubo, K. i., Suzuki, K., Yasui, Y., & Kasumi, T. (2005). Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. Journal of Food Composition and Analysis, 18(4), 303–316.CrossRefGoogle Scholar
  34. Ortega-Rivas, E. (2008). Bulk properties of food particulate materials: an appraisal of their characterisation and relevance in processing. Food and Bioprocess Technology, 2(1), 28.CrossRefGoogle Scholar
  35. Pardhi, S. D., Singh, B., Nayik, G. A., & Dar, B. N. (2019). Evaluation of functional properties of extruded snacks developed from brown rice grits by using response surface methodology. Journal of the Saudi Society of Agricultural Sciences, 18(1), 7–16.CrossRefGoogle Scholar
  36. Robin, F., Dattinger, S., Boire, A., Forny, L., Horvat, M., Schuchmann, H. P., et al. (2012a). Elastic properties of extruded starchy melts containing wheat bran using on-line rheology and dynamic mechanical thermal analysis. Journal of Food Engineering, 109(3), 414–423.CrossRefGoogle Scholar
  37. Robin, F., Dubois, C., Pineau, N., Labat, E., Théoduloz, C., & Curti, D. (2012b). Process, structure and texture of extruded whole wheat. Journal of Cereal Science, 56(2), 358–366.CrossRefGoogle Scholar
  38. Shashidhar, M. G., Murthy, T. P. K., Girish, K. G., & Manohar, B. (2013). Grinding of coriander seeds: modeling of particle size distribution and energy studies. Particulate Science and Technology, 31(5), 449–457.CrossRefGoogle Scholar
  39. Singh Gujral, H., & Singh, N. (2002). Extrusion behaviour and product characteristics of brown and milled rice grits. International Journal of Food Properties, 5(2), 307–316.CrossRefGoogle Scholar
  40. Singh, S., Gamlath, S., & Wakeling, L. (2007). Nutritional aspects of food extrusion: a review. International Journal of Food Science and Technology, 42(8), 916–929.CrossRefGoogle Scholar
  41. Sinija, V. R., Sulochana, S., & Shwetha, M. S. (2017). Engineering properties of brown rice from selected indian varieties. In A. Manickavasagan, C. Santhakumar, & N. Venkatachalapathy (Eds.), Brown Rice (pp. 45–65). Cham: Springer International Publishing.CrossRefGoogle Scholar
  42. Srichuwong, S., Sunarti, T. C., Mishima, T., Isono, N., & Hisamatsu, M. (2005). Starches from different botanical sources II: contribution of starch structure to swelling and pasting properties. Carbohydrate Polymers, 62(1), 25–34.CrossRefGoogle Scholar
  43. Standards, A. S. A. B. E. (2008). Method of determining and expressing fineness of feed materials by sieving. ANSI/ASAE S319.4 FEB2008. Michigan: American Society of Agricultural and Biological Engineers.Google Scholar
  44. Vergnes, B., & Villemaire, J. P. (1987). Rheological behaviour of low moisture molten maize starch. Rheologica Acta, 26(6), 570–576.CrossRefGoogle Scholar
  45. Walde, S. G., Balaswamy, K., Velu, V., & Rao, D. G. (2002). Microwave drying and grinding characteristics of wheat (Triticum aestivum). Journal of Food Engineering, 55(3), 271–276.CrossRefGoogle Scholar
  46. Wang, L., Duan, W., Zhou, S., Qian, H., Zhang, H., & Qi, X. (2016). Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta. Food Chemistry, 204, 320–325.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Wang, S., Kowalski, R. J., Kang, Y., Kiszonas, A. M., Zhu, M.-J., & Ganjyal, G. M. (2017). Impacts of the Particle Sizes and Levels of Inclusions of Cherry Pomace on the Physical and Structural Properties of Direct Expanded Corn Starch. Food and Bioprocess Technology, 10(2), 394–406.CrossRefGoogle Scholar
  48. Webb, P. A. (2001). Volume and density determinations for particle technologists. Micromeritics Instrument Corp, 2(16), 01–16.Google Scholar
  49. Xu, E., Wu, Z., Long, J., Wang, F., Pan, X., Xu, X., et al. (2015). Effect of Thermostable α-Amylase Addition on the Physicochemical Properties, Free/Bound Phenolics and Antioxidant Capacities of Extruded Hulled and Whole Rice. Food and Bioprocess Technology, 8(9), 1958–1973.CrossRefGoogle Scholar
  50. Zhang, W., & Hoseney, R. C. (1998). Factors affecting expansion of corn meals with poor and good expansion properties. Cereal Chemistry, 75(5), 639–643.CrossRefGoogle Scholar
  51. Zhu, S. M., Hu, F. F., Ramaswamy, H. S., Yu, Y., Yu, L., & Zhang, Q. T. (2016). Effect of High Pressure Treatment and Degree of Milling on Gelatinization and Structural Properties of Brown Rice. Food and Bioprocess Technology, 9(11), 1844–1853.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Postgraduate Program in Food Science and TechnologyUniversidade Federal Rural do Rio de JaneiroSeropedicaBrazil
  2. 2.Embrapa Agroindústria de Alimentos, Food Extrusion and Physical Properties Lab.Rio de JaneiroBrazil

Personalised recommendations