Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 12, pp 2093–2106 | Cite as

Microencapsulation of Garlic Extract by Complex Coacervation Using Whey Protein Isolate/Chitosan and Gum Arabic/Chitosan as Wall Materials: Influence of Anionic Biopolymers on the Physicochemical and Structural Properties of Microparticles

  • Loleny Tavares
  • Hélio Lopes Barbosa Barros
  • Júlio César Pacheco Vaghetti
  • Caciano Pelayo Zapata NoreñaEmail author
Original Paper
  • 82 Downloads

Abstract

The aim of this study was to encapsulate garlic extract by complex coacervation method using whey protein isolate (WPI)/chitosan (CH) and gum Arabic (GA)/CH as wall materials. Two anionic biopolymers (GA and WPI) were used to find the most suitable wall materials to interact electrostatically with cationic CH. The complex coacervates were freeze-dried to obtain microparticles powders. The microparticles were examined for the nitrogen adsorption/desorption, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), sorption isotherms, zeta potential, antioxidant activity, total phenolic content, solubility, moisture content, hygroscopicity, size distribution, and water activity. X-ray diffractograms evidenced microparticles with amorphous structure. WPI/CH and GA/CH microparticles showed surface area of 2.23 and 2.40 m2 g−1 and mean pore diameter of 5.20 and 5.37 nm, respectively. The nitrogen adsorption/desorption assay showed that microparticles presented mesopores and macropores that resulted in quick completion of microparticles surface monolayer with nitrogen. The sorption characteristics of microparticles followed the type II isotherm and Guggenheim-Anderson-de Boer (GAB) model was the best model to fit the experimental data. FTIR spectrum of microparticles reveals physical interactions between garlic compounds and functional groups of wall materials, indicating that garlic compounds were intact and encapsulated. TGA results indicated that the wall materials were effective in protecting the garlic sensitive compounds. The negative carboxyl groups (–COO) of GA were better than WPI for coacervation with positive amino groups (NH3+) of chitosan in terms of less hygroscopicity, smaller particle size, and higher retention of garlic phenolic compounds.

Keywords

Microencapsulation Garlic extract Whey protein isolate Gum Arabic Chitosan Complex coacervation 

Notes

Acknowledgments

We thank the Primex (Siglufjordur, Iceland) and Arla Foods Ingredients for donating chitosan and whey proteins isolates, respectively.

Funding Information

The authors received financial support provided by CNPq and FAPERGS. Loleny Tavares received scholarship funding from the CAPES/CNPq-Programa Estudantes-Convênio de Pós-Graduação (PEC-PG).

References

  1. Alishahi, A., & Aïder, M. (2012). Applications of chitosan in the seafood industry and aquaculture: a review. Food and Bioprocess Technology, 5(3), 817–830.CrossRefGoogle Scholar
  2. Almeida, C. M., Magalhães, J. M., Souza, H. K., & Gonçalves, M. P. (2018). The role of choline chloride-based deep eutectic solvent and curcumin on chitosan films properties. Food Hydrocolloids, 81, 456–466.CrossRefGoogle Scholar
  3. Amagase, H., Petesch, B. L., Matsuura, H., Kasuga, S., & Itakura, Y. (2001). Intake of garlic and its bioactive components. The Journal of Nutrition, 131(3), 955S–962S.PubMedCrossRefGoogle Scholar
  4. Anderson, R. B. (1946). Modifications of the Brunauer, Emmett and Teller equation1. Journal of the American Chemical Society, 68(4), 686–691.CrossRefGoogle Scholar
  5. AOAC. (1990). Official methods of analysis of the association of official analytical chemists. Washington, DC: AOAC.Google Scholar
  6. Arthur, E., Tuller, M., Moldrup, P., Greve, M. H., Knadel, M., & de Jonge, L. W. (2018). Applicability of the Guggenheim–Anderson–Boer water vapour sorption model for estimation of soil specific surface area. European Journal of Soil Science, 69(2), 245–255.CrossRefGoogle Scholar
  7. Azizi, M., Kierulf, A., Lee, M. C., & Abbaspourrad, A. (2018). Improvement of physicochemical properties of encapsulated echium oil using nanostructured lipid carriers. Food Chemistry, 246, 448–456.PubMedCrossRefGoogle Scholar
  8. Balasubramani, P., Palaniswamy, P., Visvanathan, R., Thirupathi, V., Subbarayan, A., & Maran, J. P. (2015). Microencapsulation of garlic oleoresin using maltodextrin as wall material by spray drying technology. International Journal of Biological Macromolecules, 72, 210–217.PubMedCrossRefGoogle Scholar
  9. Barrett, E. P., Joyner, L. G., & Halenda, P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73(1), 373–380.CrossRefGoogle Scholar
  10. Bastos, D. S., Barreto, B. N., Souza, H. K., Bastos, M., Rocha-Leão, M. H. M., Andrade, C. T., et al. (2010). Characterization of a chitosan sample extracted from Brazilian shrimps and its application to obtain insoluble complexes with a commercial whey protein isolate. Food Hydrocolloids, 24(8), 709–718.CrossRefGoogle Scholar
  11. Borrmann, D., Pierucci, A. P. T. R., Leite, S. G. F., & da Rocha Leão, M. H. M. (2013). Microencapsulation of passion fruit (Passiflora) juice with n-octenylsuccinate-derivatised starch using spray-drying. Food and Bioproducts Processing, 91(1), 23–27.CrossRefGoogle Scholar
  12. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319.CrossRefGoogle Scholar
  13. Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society, 62(7), 1723–1732.CrossRefGoogle Scholar
  14. Burgess, D. (1990). Practical analysis of complex coacervate systems. Journal of Colloid and Interface Science, 140(1), 227–238.CrossRefGoogle Scholar
  15. Butstraen, C., & Salaün, F. (2014). Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydrate Polymers, 99, 608–616.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cabuk, M., Yavuz, M., & Unal, H. I. (2016). Electrokinetic, electrorheological and viscoelastic properties of Polythiophene-graft-Chitosan copolymer particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 510, 231–238.CrossRefGoogle Scholar
  17. Cai, Y., & Corke, H. (2000). Production and properties of spray-dried amaranthus betacyanin pigments. Journal of Food Science, 65(7), 1248–1252.CrossRefGoogle Scholar
  18. Cano-Chauca, M., Stringheta, P., Ramos, A., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420–428.CrossRefGoogle Scholar
  19. Chang, S.-H., Wu, C.-H., & Tsai, G.-J. (2018). Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydrate Polymers, 181, 1026–1032.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chen, C., Chi, Y.-J., & Xu, W. (2012). Comparisons on the functional properties and antioxidant activity of spray-dried and freeze-dried egg white protein hydrolysate. Food and Bioprocess Technology, 5(6), 2342–2352.CrossRefGoogle Scholar
  21. Chen, C., Liu, C.-H., Cai, J., Zhang, W., Qi, W.-L., Wang, Z., et al. (2018). Broad-spectrum antimicrobial activity, chemical composition and mechanism of action of garlic (Allium sativum) extracts. Food Control, 86, 117–125.CrossRefGoogle Scholar
  22. Choi, Y.-R., & Chang, Y. H. (2018). Microencapsulation of gallic acid through the complex of whey protein concentrate-pectic polysaccharide extracted from Ulmus davidiana. Food Hydrocolloids, 85, 222–228.CrossRefGoogle Scholar
  23. da Costa, J. M. G., Silva, E. K., Hijo, A. A. C. T., Azevedo, V. M., Malta, M. R., Alves, J. G. L. F., et al. (2015). Microencapsulation of Swiss cheese bioaroma by spray-drying: process optimization and characterization of particles. Powder Technology, 274, 296–304.CrossRefGoogle Scholar
  24. Damodaran, S., & Parkin, K. L. (2017). Fennema’s food chemistry. Boca Raton: CRC Press.Google Scholar
  25. de Castro, R. J. S., Domingues, M. A. F., Ohara, A., Okuro, P. K., dos Santos, J. G., Brexó, R. P., et al. (2017). Whey protein as a key component in food systems: physicochemical properties, production technologies and applications. Food Structure, 14, 17–29.CrossRefGoogle Scholar
  26. de Souza, H. K., Bai, G., & do Pilar Gonçalves, M., & Bastos, M. (2009). Whey protein isolate–chitosan interactions: a calorimetric and spectroscopy study. Thermochimica Acta, 495(1), 108–114.Google Scholar
  27. Eratte, D., Wang, B., Dowling, K., Barrow, C. J., & Adhikari, B. P. (2014). Complex coacervation with whey protein isolate and gum arabic for the microencapsulation of omega-3 rich tuna oil. Food & Function, 5(11), 2743–2750.CrossRefGoogle Scholar
  28. Eratte, D., Dowling, K., Barrow, C. J., & Adhikari, B. (2018). Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: a review. Trends in Food Science & Technology, 71, 121–131.CrossRefGoogle Scholar
  29. Espinosa-Andrews, H., Sandoval-Castilla, O., Vázquez-Torres, H., Vernon-Carter, E. J., & Lobato-Calleros, C. (2010). Determination of the gum Arabic–chitosan interactions by Fourier transform infrared spectroscopy and characterization of the microstructure and rheological features of their coacervates. Carbohydrate Polymers, 79(3), 541–546.CrossRefGoogle Scholar
  30. Ezhilarasi, P., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 6, 628–647.CrossRefGoogle Scholar
  31. Fernandes, R. V. d. B., Borges, S. V., Botrel, D. A., & Oliveira, C. R. d. (2014). Physical and chemical properties of encapsulated rosemary essential oil by spray drying using whey protein–inulin blends as carriers. International Journal of Food Science & Technology, 49(6), 1522–1529.CrossRefGoogle Scholar
  32. Fernandes, R. V. d. B., Borges, S. V., Silva, E. K., da Silva, Y. F., de Souza, H. J. B., do Carmo, E. L., et al. (2016). Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Industrial Crops and Products, 94, 413–423.CrossRefGoogle Scholar
  33. Fu, J., Xu, Q., Chen, J., Chen, Z., Huang, X., & Tang, X. (2010). Controlled fabrication of uniform hollow core porous shell carbon spheres by the pyrolysis of core/shell polystyrene/cross-linked polyphosphazene composites. Chemical Communications, 46(35), 6563–6565.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Gámiz-González, M., Correia, D. M., Lanceros-Mendez, S., Sencadas, V., Ribelles, J. G., & Vidaurre, A. (2017). Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydrate Polymers, 167, 52–58.PubMedCrossRefPubMedCentralGoogle Scholar
  35. González-Martínez, D., Carrillo-Navas, H., Barrera-Díaz, C., Martínez-Vargas, S., Alvarez-Ramírez, J., & Pérez-Alonso, C. (2017). Characterization of a novel complex coacervate based on whey protein isolate-tamarind seed mucilage. Food Hydrocolloids, 72, 115–126.CrossRefGoogle Scholar
  36. Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50–56.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Huang, G.-Q., Sun, Y.-T., Xiao, J.-X., & Yang, J. (2012). Complex coacervation of soybean protein isolate and chitosan. Food Chemistry, 135(2), 534–539.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Ilić, J. D., Nikolovski, B. G., Petrović, L. B., Kojić, P. S., Lončarević, I. S., & Petrović, J. S. (2017). The garlic (A. sativum L.) extracts food grade W1/O/W2 emulsions prepared by homogenization and stirred cell membrane emulsification. Journal of Food Engineering, 205, 1–11.CrossRefGoogle Scholar
  39. Kang, Y.-R., Lee, Y.-K., Kim, Y. J., & Chang, Y. H. (2019). Characterization and storage stability of chlorophylls microencapsulated in different combination of gum Arabic and maltodextrin. Food Chemistry, 272, 337–346.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Khem, S., Small, D. M., & May, B. K. (2016). The behaviour of whey protein isolate in protecting Lactobacillus plantarum. Food Chemistry, 190, 717–723.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Kinalski, T., & Noreña, C. P. Z. (2014). Effect of blanching treatments on antioxidant activity and thiosulfinate degradation of garlic (Allium sativum L.). Food and Bioprocess Technology, 7, 2152–2157.CrossRefGoogle Scholar
  42. Kinalski, T., & Noreña, C. P. Z. (2019). Effect of spray drying encapsulation of garlic extract on inulin and thiosulfinates contents. Food and Bioprocess Technology, 13, 2438–2447.Google Scholar
  43. Koç, B., Yilmazer, M. S., Balkır, P., & Ertekin, F. K. (2010). Moisture sorption isotherms and storage stability of spray-dried yogurt powder. Drying Technology, 28(6), 816–822.CrossRefGoogle Scholar
  44. Krishnamachari, Y., Madan, P., & Lin, S. (2007). Development of pH-and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon. International Journal of Pharmaceutics, 338(1-2), 238–247.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kuck, L. S., & Noreña, C. P. Z. (2016). Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chemistry, 194, 569–576.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Lago, C. C., & Noreña, C. P. Z. (2015). Thermodynamic analysis of sorption isotherms of dehydrated yacon (Smallanthus sonchifolius) bagasse. Food Bioscience, 12, 26–33.CrossRefGoogle Scholar
  47. Lam, B., Déon, S., Morin-Crini, N., Crini, G., & Fievet, P. (2018). Polymer-enhanced ultrafiltration for heavy metal removal: influence of chitosan and carboxymethyl cellulose on filtration performances. Journal of Cleaner Production, 171, 927–933.CrossRefGoogle Scholar
  48. Lanzotti, V. (2006). The analysis of onion and garlic. Journal of Chromatography A, 1112(1-2), 3–22.PubMedCrossRefGoogle Scholar
  49. Lewicki, P. P. (1997). The applicability of the GAB model to food water sorption isotherms. International Journal of Food Science & Technology, 32(6), 553–557.CrossRefGoogle Scholar
  50. Liu, X., Xiong, J., & Liang, L. (2015). Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis. Journal of Natural Gas Science and Engineering, 22, 62–72.CrossRefGoogle Scholar
  51. Lomauro, C., Bakshi, A., & Labuza, T. P. (1985). Evaluation of food moisture sorption isotherm equations part II: milk, coffee, tea, nuts, oilseeds, spices and starchy foods. LWT- Food Science and Technology, 18(2), 118–124.Google Scholar
  52. Lu, X., Ross, C. F., Powers, J. R., Aston, D. E., & Rasco, B. A. (2011). Determination of total phenolic content and antioxidant activity of garlic (Allium sativum) and elephant garlic (Allium ampeloprasum) by attenuated total reflectance–Fourier transformed infrared spectroscopy. Journal of Agricultural and Food Chemistry, 59(10), 5215–5221.PubMedCrossRefGoogle Scholar
  53. Martins, N., Petropoulos, S., & Ferreira, I. C. F. R. (2016). Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chemistry, 211, 41–50.PubMedCrossRefGoogle Scholar
  54. Meng, F., Wang, S., Liu, H., Xu, X., & Ma, H. (2017). Microencapsulation of oxalic acid (OA) via coacervation induced by polydimethylsiloxane (PDMS) for the sustained release performance. Materials & Design, 116, 31–41.CrossRefGoogle Scholar
  55. Montano, A., Beato, V. M., Mansilla, F., & Orgaz, F. (2011). Effect of genetic characteristics and environmental factors on organosulfur compounds in garlic (Allium sativum L.) grown in Andalusia, Spain. Journal of Agricultural and Food Chemistry, 59(4), 1301–1307.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Niu, F., Niu, D., Zhang, H., Chang, C., Gu, L., Su, Y., et al. (2016). Ovalbumin/gum arabic-stabilized emulsion: rheology, emulsion characteristics, and Raman spectroscopic study. Food Hydrocolloids, 52, 607–614.CrossRefGoogle Scholar
  57. Noreña, C. P. Z., Bayarri, S., & Costell, E. J. F. B. (2015). Effects of xanthan gum additions on the viscoelasticity, structure and storage stability characteristics of prebiotic custard desserts. Food Biophysics, 10(2), 116–128.CrossRefGoogle Scholar
  58. Nuutila, A. M., Puupponen-Pimiä, R., Aarni, M., & Oksman-Caldentey, K.-M. (2003). Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chemistry, 81(4), 485–493.CrossRefGoogle Scholar
  59. Peng, X., Li, R., Zou, R., Chen, J., Zhang, Q., Cui, P., et al. (2014). Allicin inhibits microbial growth and oxidative browning of fresh-cut lettuce (Lactuca sativa) during refrigerated storage. Food and Bioprocess Technology, 7(6), 1597–1605.CrossRefGoogle Scholar
  60. Peniche, C., Argüelles-Monal, W., Peniche, H., & Acosta, N. (2003). Chitosan: an attractive biocompatible polymer for microencapsulation. Macromolecular Bioscience, 3(10), 511–520.CrossRefGoogle Scholar
  61. Piletti, R., Zanetti, M., Jung, G., de Mello, J. M. M., Dalcanton, F., Soares, C., Riella, H. G., & Fiori, M. A. (2019). Microencapsulation of garlic oil by β-cyclodextrin as a thermal protection method for antibacterial action. Materials Science and Engineering: C, 94, 139–149.CrossRefGoogle Scholar
  62. Pinilla, C. M. B., & Brandelli, A. (2016). Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innovative Food Science & Emerging Technologies, 36, 287–293.CrossRefGoogle Scholar
  63. Pinilla, C. M. B., Noreña, C. P. Z., & Brandelli, A. (2017). Development and characterization of phosphatidylcholine nanovesicles, containing garlic extract, with antilisterial activity in milk. Food Chemistry, 220, 470–476.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Premi, M., & Sharma, H. (2017). Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behavior and oxidative stability of spray dried drumstick (Moringa oleifera) oil. International Journal of Biological Macromolecules, 105, 1232–1240.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Quispe-Condori, S., Saldaña, M. D., & Temelli, F. (2011). Microencapsulation of flax oil with zein using spray and freeze drying. LWT- Food Science and Technology, 44(9), 1880–1887.CrossRefGoogle Scholar
  66. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231–1237.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science & Technology, 45(7), 1386–1394.CrossRefGoogle Scholar
  68. Rocha-Selmi, G. A., Theodoro, A. C., Thomazini, M., Bolini, H. M., & Favaro-Trindade, C. S. (2013). Double emulsion stage prior to complex coacervation process for microencapsulation of sweetener sucralose. Journal of Food Engineering, 119(1), 28–32.CrossRefGoogle Scholar
  69. Santhosha, S. G., Jamuna, P., & Prabhavathi, S. N. (2013). Bioactive components of garlic and their physiological role in health maintenance: a review. Food Bioscience, 3, 59–74.CrossRefGoogle Scholar
  70. Santos, M. G., Bozza, F. T., Thomazini, M., & Favaro-Trindade, C. S. (2015). Microencapsulation of xylitol by double emulsion followed by complex coacervation. Food Chemistry, 171, 32–39.PubMedCrossRefGoogle Scholar
  71. Shi, Y., Li, C., Zhang, L., Huang, T., Ma, D., Tu, Z.-c., et al. (2017). Characterization and emulsifying properties of octenyl succinate anhydride modified Acacia seyal gum (gum arabic). Food Hydrocolloids, 65, 10–16.CrossRefGoogle Scholar
  72. Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603–619.CrossRefGoogle Scholar
  73. Singleton, V., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.Google Scholar
  74. Spiess, W., & Wolf, W. (1983). Results of the COST 90 project on water activity. In R. Jowitt (Ed.), Physical properties of foods. London: Applied Science Publishers.Google Scholar
  75. Szulińska, M., Kręgielska-Narożna, M., Świątek, J., Styś, P., Kuźnar-Kamińska, B., Jakubowski, H., Walkowiak, J., & Bogdański, P. (2018). Garlic extract favorably modifies markers of endothelial function in obese patients–randomized double blind placebo-controlled nutritional intervention. Biomedicine & Pharmacotherapy, 102, 792–797.CrossRefGoogle Scholar
  76. Tan, C., Xie, J., Zhang, X., Cai, J., & Xia, S. (2016). Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocolloids, 57, 236–245.CrossRefGoogle Scholar
  77. Tavares, L., & Noreña, C. P. Z. (2019). Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray drying. Food Hydrocolloids, 89, 360–369.CrossRefGoogle Scholar
  78. Timilsena, Y. P., Akanbi, T. O., Khalid, N., Adhikari, B., & Barrow, C. J. (2018). Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276–1286.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Tomšik, A., Šarić, L., Bertoni, S., Protti, M., Albertini, B., Mercolini, L., et al. (2018). Encapsulations of wild garlic (Allium ursinum L.) extract using spray congealing technology. Food Research International, 119, 941–950.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Tonon, R. V., Brabet, C., & Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 88(3), 411–418.CrossRefGoogle Scholar
  81. Tonon, R. V., Brabet, C., Pallet, D., Brat, P., & Hubinger, M. D. (2009). Physicochemical and morphological characterisation of açai (Euterpe oleraceae Mart.) powder produced with different carrier agents. International Journal of Food Science & Technology, 44(10), 1950–1958.CrossRefGoogle Scholar
  82. Włodarczyk-Stasiak, M., Mazurek, A., Pankiewicz, U., Sujka, M., & Jamroz, J. (2014). Porosity of starch–proteins extrudates determined from nitrogen adsorption data. Food Hydrocolloids, 36, 308–315.CrossRefGoogle Scholar
  83. Wolf, W., Spiess, W., & Jung, G. (1985). Standardization of isotherm measurements (COST-project 90 and 90 bis). In D. Simatos & J. L. Multon (Eds.), Properties of water in foods (pp. 661–679). Dordrecht: Springer.CrossRefGoogle Scholar
  84. Xu, D., Aihemaiti, Z., Cao, Y., Teng, C., & Li, X. (2016). Physicochemical stability, microrheological properties and microstructure of lutein emulsions stabilized by multilayer membranes consisting of whey protein isolate, flaxseed gum and chitosan. Food Chemistry, 202, 156–164.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Young, J. F. (1967). Humidity control in the laboratory using salt solutions—a review. Journal of Applied Chemistry, 17(9), 241–245.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Food Science and TechnologyFederal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Institute of ChemistryFederal University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations