Advertisement

Effect of Edible Coating from Cassava Starch and Babassu Flour (Orbignya phalerata) on Brazilian Cerrado Fruits Quality

  • Danielle C. M. Ferreira
  • Gustavo Molina
  • Franciele M. PelissariEmail author
Communication
  • 49 Downloads

Abstract

New edible coatings made of cassava starch and babassu flour were applied on cagaita and mangaba, two typical fruits from the Brazilian Cerrado, by dipping method. The effect of the babassu flour concentration (10, 30, or 50 g/100 g of starch) on the properties of coated fruits were studied. Fruits treated with cassava starch coating added with 50% babassu flour provided the most satisfactory results in terms of weight loss: mass loss was only 14% and 7% for cagaitas and mangabas, respectively. Meanwhile, uncoated fruits experienced greater weight loss up to 35%, indicating water loss due to product degradation during storage period and led to weight loss. Therefore, edible coatings protected fruits from dehydration. Uncoated fruits had the highest increase in a* parameter, which provided them with a more reddish color and faster ripening rate. Total soluble solids were stable for coated fruits along storage. All treatments showed an increase in pH values attributed to the degradation of organic acids in fruits. These results are in agreement with the acidity reduction reported for mangabas. Unlike mangabas, acid values increased in cagaitas which was associated with galacturonic acid formation by pectinesterase. Overall, cassava starch added with babassu flour is a promising material to produce edible coatings with adequate physical properties for food applications.

Keywords

Biopolymers Food coatings Babassu mesocarp Cerrado biome Postharvest treatment 

Notes

Authors’ Contribution

D. C. M. Ferreira collected test data and drafted the manuscript. G. Molina revised the work critically for important intellectual content. F. M. Pelissari designed the study and revised the work critically for important intellectual content.

Funding Information

Financial support provided by the Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brazil (CNPq—no. 458675/2014-8), Fundação de Amparo à Pesquisa do Estado de Minas Gerais—Brazil (FAPEMIG—no. APQ-00768-16), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES).

References

  1. Almeida, R. R., Lacerda, L. G., Murakami, F. S., Bannach, G., Demiate, I. M., Soccol, C. R., Carvalho Filho, M. A. S., & Schnitzler, E. (2011). Thermal analysis as a screening technique for the characterization of babassu flour and its solid fractions after acid and enzymatic hydrolysis. Thermochimica Acta, 519, 50–54.CrossRefGoogle Scholar
  2. Andrade-Mahecha, M. M., Tapia-Blácido, D. R., & Menegalli, F. C. (2012). Development and optimization of biodegradable films based on achira flour. Carbohydrate Polymers, 88, 449–458.CrossRefGoogle Scholar
  3. Assis, O. B. G., & Britto, D. (2014). Revisão: coberturas comestíveis protetoras em frutas: fundamentos e aplicações. Brazilian Journal Food Technology, 17, 87–97.CrossRefGoogle Scholar
  4. Baruque, E. A., Baruque, M. d. G. A., & Sant’Anna Junior, G. L. (2000). Babassu coconut starch liquefaction : an industrial scale approach to improve conversion yield. Bioresource Technology, 75, 49–55.CrossRefGoogle Scholar
  5. Benincasa, P., Dominici, F., Bocci, L., Governatori, C., Panfili, I., Tosti, G., Torre, L., & Puglia, D. (2017). Relationships between wheat flour baking properties and tensile characteristics of derived thermoplastic films. Industrial Crops and Products, 100, 138–145.CrossRefGoogle Scholar
  6. Carneiro, J. d. O., Souza, M. A. d. A., Rodrigues, Y. J. d. M., & Mapeli, A. (2015). Efeito da temperatura e do uso de embalagem na conservação pós-colheita de frutos de cagaita (Eugenia Dysentericadc.). Revista Brasileira de Fruticultura, 37, 568–577.CrossRefGoogle Scholar
  7. Castañeda, L. M. F., Bender, R. J., Silva, S. J. N., & Pereira, C. (2014). Postharvest evaluation of apples cv. Fuji coated with chitosan solution from filmogenic. Pesquisa Agropecuária Gaúcha, 20, 108–117.Google Scholar
  8. Chiabrando, V., & Giacalone, G. (2016). Effects of edible coatings on quality maintenance of fresh-cut nectarines. Emirates Journal of Food and Agriculture, 28, 201–207.CrossRefGoogle Scholar
  9. Chiumarelli, M., Ferrari, C. C., Sarantópoulos, C. I. G. L., & Hubinger, M. D. (2011). Fresh cut “Tommy Atkins” mango pre-treated with citric acid and coated with cassava (Manihot esculenta Crantz) starch or sodium alginate. Innovative Food Science and Emerging Technologies, 12, 381–387.CrossRefGoogle Scholar
  10. Colussi, R., Zanella, V., Lisie, S., El, M., Biduski, B., Prietto, L., Castilhos, D., Zavareze, D., Dias, E. R., & G. (2017). Acetylated rice starches films with different levels of amylose: mechanical, water vapor barrier, thermal, and biodegradability properties. Food Chemistry, 221, 1614–1620.CrossRefGoogle Scholar
  11. Condés, M. C., Añón, M. C., Dufresne, A., & Mauria, N. (2018). Composite and nanocomposite films based on amaranth biopolymers. Food Hydrocolloids, 74, 159–167.CrossRefGoogle Scholar
  12. Hernández-Muñoz, P., Almenar, E., Ocio, M. J., & Gavara, R. (2006). Effect of calcium dips and chitosan coatings on postharvest life of strawberries (Fragaria x ananassa). Postharvest Biology and Technology, 39, 247–253.CrossRefGoogle Scholar
  13. Jaramillo, C. M., Gutiérrez, T. J., Goyanes, S., Bernal, C., & Famá, L. (2016). Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydrate Polymers, 151, 150–159.CrossRefGoogle Scholar
  14. Lima, J. P., Rodrigues, L. F., Monteiro, A. G. D. P., Boas, V., & E. V. de B. (2015). Climacteric pattern of mangaba fruit (Hancornia speciosa Gomes) and its responses to temperature. Scientia Horticulturae, 197, 399–403.CrossRefGoogle Scholar
  15. Maniglia, B. C., & Tapia-Blácido, D. R. (2016). Isolation and characterization of starch from babassu mesocarp. Food Hydrocolloids, 55, 47–55.CrossRefGoogle Scholar
  16. Maniglia, B. C., Domingos, J. R., Paula, R. L., & Tapia-Blácio, D. R. (2014). Development of bioactive edible film from turmeric dye solvent extraction residue. LWT - Food Science and Technology, 56, 269–277.CrossRefGoogle Scholar
  17. Maniglia, B. C., Tessaro, L., Lucas, A. A., & Tapia-blácido, D. R. (2017). Bioactive films based on babassu mesocarp flour and starch. Food Hydrocolloids, 70, 383–391.CrossRefGoogle Scholar
  18. Osorio, S., & Fernie, A. R. (2013). Biochemistry of fruit ripening. In G. B. Seymour, M. Poole, J. J. Giovannoni, & G. A. Tucker (Eds.), The molecular biology and biochemistry of fruit ripening (p. 1–19). John Wiley & Sons.Google Scholar
  19. Pelissari, F. M., Andrade-Mahecha, M. M., Sobral, P. J. d. A., & Menegalli, F. C. (2013). LWT - Food Science and Technology Optimization of process conditions for the production of films based on the flour from plantain bananas (Musa paradisiaca). LWT - Food Science and Technology, 52, 1–11.CrossRefGoogle Scholar
  20. Pereira, A. C., Pereira, A. B. D., Moreira, C. C. L., Botion, L. M., Lemos, V. S., Braga, F. C., & Cortes, S. F. (2015). Hancornia speciosa Gomes (Apocynaceae) as a potential anti-diabetic drug. Journal of Ethnopharmacology, 161, 30–35.CrossRefGoogle Scholar
  21. Pérez-Gallardo, A., García-Almendárez, B., Barbosa-Cánovas, G., Pimentel-González, D., Reyes-González, L. R., & Regalado, C. (2015). Effect of starch-beeswax coatings on quality parameters of blackberries (Rubus spp.). Food and Science Technology, 52, 5601–5610.Google Scholar
  22. Sánchez-Ortega, I., García-Almendarez, B. E., Santos-López, E. M., Reyes-González, L. R., & Regalado, C. (2016). Characterization and antimicrobial effect of starch-based edible coating suspensions. Food Hydrocolloids, 52, 906–913.CrossRefGoogle Scholar
  23. Sano, S. M., & Almeida, S. P. (1998). Cerrado: ambiente flora. Planaltina: Embrapa-CPAC.Google Scholar
  24. Silva, W. B., Michelle, G., Silva, C., Renata, L., & Silva, D. A. (2015). Tratamento com cloreto de cálcio na pós-colheita retarda o desverdecimento e a perda de firmeza do mamão. Revista Brasileira de Fruticultura, 37, 588–599.CrossRefGoogle Scholar
  25. Silva, M. M. M., Silva, E. P., Silva, F. A., Ogando, F. I. B., Aguiar, C. L., & Damiani, C. (2017). Physiological development of cagaita (Eugenia dysenterica). Food Chemistry, 217, 74–80.CrossRefGoogle Scholar
  26. Stülp, M., Clemente, E., Menezes de Oliveira, D., & Bucalão Gnas, B. B. (2012). Conservação e qualidade de mirtilo orgânico utilizando revestimento comestível a base de fécula de mandioca. Revista Brasileira de Tecnologia Agroindustrial, 6, 713–721.CrossRefGoogle Scholar
  27. Vargas, C. G., Costa, T. M. H., Rios, A. D. O., & Flôres, S. H. (2017). Comparative study on the properties of films based on red rice (Oryza glaberrima) flour and starch. Food Hydrocolloids, 65, 96–106.CrossRefGoogle Scholar
  28. Vinhal, J. O., Lima, C. F., & Barbosa, L. C. A. (2014). Analytical pyrolysis of the kernel and oil of babassu palm (Orbignya phalerata). Journal of Analytical and Applied Pyrolysis, 107, 73–81.CrossRefGoogle Scholar
  29. Zhang, Y., Liu, Z., Chen, Y., He, J. X., & Bi, Y. (2015). Phytochrome-interacting factor 5 (PIF5) positively regulates dark-induced senescence and chlorophyll degradation in Arabidopsis. Plant Science, 237, 57–68.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Green Materials, Food Engineering, Institute of Science and TechnologyUniversity of Jequitinhonha and MucuriDiamantinaBrazil
  2. 2.Laboratory of Food Biotechnology, Food Engineering, Institute of Science and TechnologyUniversity of Jequitinhonha and MucuriDiamantinaBrazil

Personalised recommendations