Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 12, pp 1993–2003 | Cite as

A Laboratory IGBT-Based High-voltage Pulsed Electric Field Generator for Effective Water Diffusivity Enhancement in Chicken Meat

  • Klimentiy Levkov
  • Edward Vitkin
  • César A. González
  • Alexander GolbergEmail author
Original Paper

Abstract

Enhancing water diffusivity shortens meat processing time and saves energy and costs. One of the processes that can enhance water diffusivity in tissues is high-voltage, short-pulsed electric fields (PEF). However, for industrial PEF process development, there is a need in adaptable laboratory instruments. Here we report on a laboratory PEF generator, based on insulated-gate monopolar transistor switching, coupled with sliding positive electrode for the enhancement of water diffusivity in chicken breast muscle. The system generates rectangular monopolar pulses with a voltage amplitude up to 1000 V, current up to 160 A, pulse duration of 5 to 100 μs, and a frequency of pulse repetition of 1–16 Hz. The energy conversion efficiency of the developed PEF generator is 88%. We found that applying 120 pulses at 1000 V (~ 500 V mm−1), and a pulse duration of 50 μs at 1 Hz, on the chicken breast muscle, increased the effective diffusivity of water by 13–24% and reduced convective air drying time by 6.4–15.3%. These results provide new information on the design of laboratory equipment to improve and optimize meat pre-processing on a small scale. Flexible, small-scale PEF equipment is a necessary step for the industrial development of new processes which could reduce equipment size and process energy consumption in the meat industry.

Keywords

Meat processing Drying Pulsed electric field Electroporation Effective diffusivity IGBT pulsed-field generator 

Notes

Acknowledgments

The authors sincerely thank Prof. Rene Schloss from Rutgers University, USA, for reading and critically reviewing the manuscript.

Funding Information

This work received funding from the Israel Ministry of Agriculture (no. 383/16).

Supplementary material

11947_2019_2360_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 20 kb)
11947_2019_2360_MOESM2_ESM.docx (16 kb)
ESM 2 (DOCX 15 kb)
11947_2019_2360_Fig6_ESM.png (1.5 mb)
ESM 3

(PNG 1488 kb)

11947_2019_2360_MOESM3_ESM.TIF
High Resolution Image (TIF 406 kb)

References

  1. Alahakoon, A. U., Faridnia, F., Bremer, P. J., Silcock, P., & Oey, I. (2017). Pulsed electric fields effects on meat tissue quality and functionality. In Handbook of electroporation (Vol. 4, pp. 2455–2475).  https://doi.org/10.1007/978-3-319-32886-7_179.
  2. Alcazar-Ortega, M., Escrivá, G. E., Alvarez, C., & Domijan, A. (2011). Active demand response strategies to improve energy efficiency in the meat industry. In World Renewable Energy Congress.Google Scholar
  3. Amami, E., Khezami, L., Vorobiev, E., & Kechaou, N. (2008). Effect of pulsed electric field and osmotic dehydration pretreatment on the convective drying of carrot tissue. Drying Technology, 26(2), 231–238.  https://doi.org/10.1080/07373930701537294.CrossRefGoogle Scholar
  4. Apple, J. K., & Yancey, J. W. S. (2013). Water-holding capacity of meat. In The Science of Meat Quality (pp. 119–145).  https://doi.org/10.1002/9781118530726.ch7.
  5. Arnau, J., Serra, X., Comaposada, J., Gou, P., & Garriga, M. (2007). Technologies to shorten the drying period of dry-cured meat products. Meat Science, 77(1 SPEC. ISS), 81–89.  https://doi.org/10.1016/j.meatsci.2007.03.015.CrossRefPubMedGoogle Scholar
  6. Arroyo, C., Lascorz, D., O’Dowd, L., Noci, F., Arimi, J., & Lyng, J. G. (2014). Effect of pulsed electric field treatments at various stages during conditioning on quality attributes of beef longissimus thoracis et lumborum muscle. Meat Science.  https://doi.org/10.1016/j.meatsci.2014.08.004.
  7. Arroyo, C., Eslami, S., Brunton, N. P., Arimi, J. M., Noci, F., & Lyng, J. G. (2015). An assessment of the impact of pulsed electric fields processing factors on oxidation, color, texture, and sensory attributes of turkey breast meat. Poultry Science.  https://doi.org/10.3382/ps/pev097.
  8. Bantle, M., Tolstorebrov, I., Kvalsvik, K., Petrova, I., Nordtvedt, T., & Eikevik, T. M. (2015). Influence of climate conditions on the energy consumption of refrigeration system in the food processing industry. In 24th IIR International Congress of Refrigeration (ICR2015).Google Scholar
  9. Bekhit, A. E. D. A., van de Ven, R., Suwandy, V., Fahri, F., & Hopkins, D. L. (2014). Effect of pulsed electric field treatment on cold-boned muscles of different potential tenderness. Food and Bioprocess Technology., 7(11), 3136–3146.  https://doi.org/10.1007/s11947-014-1324-8.CrossRefGoogle Scholar
  10. Ben-Dor, A., Friedman, N., & Yakhini, Z. (2001). Class discovery in gene expression data. Proceedings of the fifth annual international conference on Computational biology RECOMB 01 (pp. 31–38).  https://doi.org/10.1145/369133.369167.
  11. Bhat, Z. F., Morton, J. D., Mason, S. L., & Bekhit, A. E.-D. A. (2018a). Current and future prospects for the use of pulsed electric field in the meat industry. Critical Reviews in Food Science and Nutrition, 1–15.  https://doi.org/10.1080/10408398.2018.1425825.
  12. Bhat, Z. F., Morton, J. D., Mason, S. L., & Bekhit, A. E. D. A. (2018b). Pulsed electric field: role in protein digestion of beef biceps femoris. Innovative Food Science and Emerging Technologies.  https://doi.org/10.1016/j.ifset.2018.09.006.
  13. Bhat, Z. F., Morton, J. D., Mason, S. L., Jayawardena, S. R., & Bekhit, A. E. D. A. (2019). Pulsed electric field: a new way to improve digestibility of cooked beef. Meat Science.  https://doi.org/10.1016/j.meatsci.2019.05.005.
  14. Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon, R., Yakhini, Z., Ben-Dor, A., Sampas, N., Dougherty, E., Wang, E., Marincola, F., Gooden, C., Lueders, J., Glatfelter, A., Pollock, P., Carpten, J., Gillanders, E., Leja, D., Dietrich, K., Beaudry, C., Berens, M., Alberts, D., & Sondak, V. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 406(6795), 536–540.  https://doi.org/10.1038/35020115.CrossRefPubMedGoogle Scholar
  15. Bobinaitė, R., Pataro, G., Lamanauskas, N., Šatkauskas, S., Viškelis, P., & Ferrari, G. (2014). Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. Journal of Food Science and Technology.  https://doi.org/10.1007/s13197-014-1668-0.
  16. Colak, N., & Hepbasli, A. (2009). A review of heat-pump drying (HPD): part 2 - applications and performance assessments. Energy Conversion and Management.  https://doi.org/10.1016/j.enconman.2009.04.037.
  17. Čorović, S., Županič, A., Kranjc, S., Al Sakere, B., Leroy-Willig, A., Mir, L. M., & Miklavčič, D. (2010). The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling. Medical and Biological Engineering and Computing.  https://doi.org/10.1007/s11517-010-0614-1.
  18. Čorović, S., Mir, L. M., & Miklavčič, D. (2012). In vivo muscle electroporation threshold determination: realistic numerical models and in vivo experiments. Journal of Membrane Biology., 245(9), 509–520.  https://doi.org/10.1007/s00232-012-9432-8.CrossRefPubMedGoogle Scholar
  19. Crank, J. (1975). Methods of solution when the diffusion coefficient is constant. In The mathematics of diffusion (p. 414).  https://doi.org/10.1016/0306-4549(77)90072-X.
  20. den Hertog-Meischke, M. J., van Laack, R. J., & Smulders, F. J. (1997). The water-holding capacity of fresh meat. The Veterinary Quarterly, 19(4), 175–181.  https://doi.org/10.1080/01652176.1997.9694767.CrossRefGoogle Scholar
  21. Donsì, F., Ferrari, G., Fruilo, M., & Pataro, G. (2010). Pulsed electric field-assisted vinification of aglianico and piedirosso grapes. Journal of Agricultural and Food Chemistry.  https://doi.org/10.1021/jf102065v.
  22. Faridnia, F., Bekhit, A. E. D. A., Niven, B., & Oey, I. (2014a). Impact of pulsed electric fields and post-mortem vacuum ageing on beef longissimus thoracis muscles. International Journal of Food Science and Technology.  https://doi.org/10.1111/ijfs.12532.
  23. Faridnia, F., Li Ma, Q., Bremer, P. J., John Burritt, D., Hamid, N., & Oey, I. (2014b). Effect of freezing as pre-treatment prior to pulsed electric field processing on quality traits of beef muscles. Innovative Food Science and Emerging Technologies.  https://doi.org/10.1016/j.ifset.2014.09.007.
  24. Faridnia, F., Bremer, P., Burritt, D. J., & Oey, I. (2016). Effects of pulsed electric fields on selected quality attributes of beef outside flat (Biceps femoris). In IFMBE Proceedings (Vol. 53, pp. 51–54).  https://doi.org/10.1007/978-981-287-817-5_12.
  25. Fisher, R. A. (1932). Statistical methods for research workers. Biological Monographs and Manuals.  https://doi.org/10.1056/NEJMc061160.
  26. Gehl, J., Sørensen, T. H., Nielsen, K., Raskmark, P., Nielsen, S. L., Skovsgaard, T., & Mir, L. M. (1999). In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochimica et Biophysica Acta - General Subjects.  https://doi.org/10.1016/S0304-4165(99)00094-X.
  27. Golberg, A., & Rubinsky, B. (2013). Mass transfer phenomena in tlectroporation. In Transport in Biological Media (pp. 456–492). Elsevier.  https://doi.org/10.1016/B978-0-12-415824-5.00012-6.
  28. Golberg, A., Rabinowitch, H. D., & Rubinsky, B. (2009). Galvanic apparent internal impedance: an intrinsic tissue property. Biochemical and Biophysical Research Communications, 389(1), 168–171.  https://doi.org/10.1016/j.bbrc.2009.08.119.CrossRefPubMedGoogle Scholar
  29. Golberg, A., Rabinowitch, H. D., & Rubinsky, B. (2010). Zn/Cu-vegetative batteries, bioelectrical characterizations, and primary cost analyses. Journal of Renewable and Sustainable Energy, 2(3), 1–11.  https://doi.org/10.1063/1.3427222.CrossRefGoogle Scholar
  30. Golberg, A., Laufer, S., Rabinowitch, H. D., & Rubinsky, B. (2011). In vivo non-thermal irreversible electroporation impact on rat liver galvanic apparent internal resistance. Physics in Medicine and Biology, 56(4), 951–963.  https://doi.org/10.1088/0031-9155/56/4/005.CrossRefPubMedGoogle Scholar
  31. Golberg, A., Sack, M., Teissie, J., Pataro, G., Pliquett, U., Saulis, G., et al. (2016). Energy efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnologies for Biofuels, 9(1), 1.  https://doi.org/10.1186/s13068-016-0508-z.CrossRefGoogle Scholar
  32. Golberg, A., Villiger, M., Felix Broelsch, G., Quinn, K. P. K. P., Albadawi, H., Khan, S., et al. (2017). Skin regeneration with all accessory organs following ablation with irreversible electroporation. Journal of Tissue Engineering and Regenerative Medicine.  https://doi.org/10.1002/term.2374.
  33. Gómez, J., Sanjuán, N., Bon, J., Arnau, J., & Clemente, G. (2015). Effect of temperature on nitrite and water diffusion in pork meat. Journal of Food Engineering, 149, 188–194.  https://doi.org/10.1016/j.jfoodeng.2014.10.008.CrossRefGoogle Scholar
  34. Granot, Y., & Rubinsky, B. (2008). Mass transfer model for drug delivery in tissue cells with reversible electroporation. International Journal of Heat and Mass Transfer, 51(23–24), 5610–5616.  https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.041.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gudmundsson, M., & Hafsteinsson, H. (2001). Effect of electric field pulses on microstructure of muscle foods and roes. Trends in Food Science and Technology.  https://doi.org/10.1016/S0924-2244(01)00068-1.
  36. Hallström, B. (1990). Mass transport of water in foods — a consideration of the engineering aspects. Journal of Food Engineering, 12(1), 45–52.  https://doi.org/10.1016/0260-8774(90)90018-4.CrossRefGoogle Scholar
  37. Hofmann, G. A. (2000). Instrumentation and electrodes for in vivo electroporation. In Electrochemotherapy, Electrogenetherapy, and Transdermal Drug Delivery (pp. 37–61). New Jersey: Humana Press.  https://doi.org/10.1385/1-59259-080-2:37.CrossRefGoogle Scholar
  38. Huff-Lonergan, E. (2009). Fresh meat water-holding capacity. … Sensory and Nutritional Quality of Fresh Meat.  https://doi.org/10.1533/9781845695439.1.147.
  39. Janositz, A., Noack, A.-K., & Knorr, D. (2011). Pulsed electric fields and their impact on the diffusion characteristics of potato slices. LWT - Food Science and Technology, 44(9), 1939–1945.  https://doi.org/10.1016/j.lwt.2011.04.006.CrossRefGoogle Scholar
  40. Knorr, D. (2018). Emerging technologies: back to the future. Trends in Food Science & Technology, 76, 119–123.  https://doi.org/10.1016/J.TIFS.2018.03.023.CrossRefGoogle Scholar
  41. Kotnik, T., Kramar, P., Pucihar, G., Miklavčič, D., & Tarek, M. (2012). Cell membrane electroporation - part 1: the phenomenon. IEEE Electrical Insulation Magazine, 28(5), 14–23.  https://doi.org/10.1109/MEI.2012.6268438.CrossRefGoogle Scholar
  42. Kotnik, T., Frey, W., Sack, M., Haberl Meglič, S., Peterka, M., & Miklavčič, D. (2015). Electroporation-based applications in biotechnology. Trends in Biotechnology, 33(8), 480–488.  https://doi.org/10.1016/j.tibtech.2015.06.002.CrossRefPubMedGoogle Scholar
  43. Lebovka, N. I., Shynkaryk, N. V., & Vorobiev, E. (2007). Pulsed electric field enhanced drying of potato tissue. Journal of Food Engineering, 78(2), 606–613.  https://doi.org/10.1016/j.jfoodeng.2005.10.032.CrossRefGoogle Scholar
  44. Ma, Q., Hamid, N., Oey, I., Kantono, K., Faridnia, F., Yoo, M., & Farouk, M. (2016). Effect of chilled and freezing pre-treatments prior to pulsed electric field processing on volatile profile and sensory attributes of cooked lamb meats. Innovative Food Science and Emerging Technologies.  https://doi.org/10.1016/j.ifset.2016.04.009.
  45. McDonnell, C. K., Allen, P., Chardonnereau, F. S., Arimi, J. M., & Lyng, J. G. (2014). The use of pulsed electric fields for accelerating the salting of pork. LWT - Food Science and Technology, 59(2P1), 1054–1060.  https://doi.org/10.1016/j.lwt.2014.05.053.CrossRefGoogle Scholar
  46. Mujumdar, A. S. (2014). Handbook of industrial drying, fourth edition. Handbook of industrial drying, Fourth Edition.  https://doi.org/10.1201/b17208.
  47. Novickij, V., Grainys, A., Novickij, J., Tolvaisiene, S., & Markovskaja, S. (2014). Compact electro-permeabilization system for controlled treatment of biological cells and cell medium conductivity change measurement. Measurement Science Review.  https://doi.org/10.2478/msr-2014-0038.
  48. O’Dowd, L. P., Arimi, J. M., Noci, F., Cronin, D. A., & Lyng, J. G. (2013). An assessment of the effect of pulsed electrical fields on tenderness and selected quality attributes of post rigour beef muscle. Meat Science.  https://doi.org/10.1016/j.meatsci.2012.09.010.
  49. Pirc, E., Rebersek, M., & Miklavcic, D. (2017). Dosimetry in electroporation-based technologies and treatments. In Dosimetry in Bioelectromagnetic (pp. 233–268). Boca Raton: CRC Press.CrossRefGoogle Scholar
  50. Puc, M., Čorović, S., Flisar, K., Petkovšek, M., Nastran, J., & Miklavčič, D. (2004). Techniques of signal generation required for electropermeabilization. Survey of electropermeabilization devices. Bioelectrochemistry.  https://doi.org/10.1016/j.bioelechem.2004.04.001.
  51. Puértolas, E., Luengo, E., Álvarez, I., & Raso, J. (2012). Improving mass transfer to soften tissues by pulsed electric fields: fundamentals and applications. Annual Review of Food Science and Technology, 3(1), 263–282.  https://doi.org/10.1146/annurev-food-022811-101208.CrossRefPubMedGoogle Scholar
  52. Reberšek, M., Miklavcic, D., & Miklavcic, D. (2010). Concepts of electroporation pulse generation and overview of electric pulse generators for cell and tissue electroporation, 343–360.  https://doi.org/10.1201/EBK1439819067-21.
  53. Reberšek, M., Miklavcic, D., Bertacchini, C., & Sack, M. (2014). Cell membrane electroporation-part 3: the equipment. IEEE Electrical Insulation Magazine, 30(3), 8–18.  https://doi.org/10.1109/MEI.2014.6804737.CrossRefGoogle Scholar
  54. Sack, M., Eing, C., Berghöfer, T., Buth, L., Stängle, R., Frey, W., & Bluhm, H. (2008). Electroporation-assisted dewatering as an alternative method for drying plants. IEEE Transactions on Plasma Science, 36(5 PART 3), 2577–2585.  https://doi.org/10.1109/TPS.2008.2002440.CrossRefGoogle Scholar
  55. Sack, M., Hochberg, M., & Mueller, G. (2016). Synchronized switching and active clamping of IGBT switches in a simple marx generator. In PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management.Google Scholar
  56. Sack, M., Ruf, J., Hochberg, M., Herzog, D., & Mueller, G. (2017). A device for combined thermal and pulsed electric field treatment of food. In 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP) (pp. 31–36). IEEE.  https://doi.org/10.1109/OPTIM.2017.7974943.
  57. Schertzer, J. D., Plant, D. R., & Lynch, G. S. (2006). Optimizing plasmid-based gene transfer for investigating skeletal muscle structure and function. Molecular Therapy.  https://doi.org/10.1016/j.ymthe.2005.09.019.
  58. Spugnini, E. P., Arancia, G., Porrello, A., Colone, M., Formisano, G., Stringaro, A., Citro, G., & Molinari, A. (2007). Ultrastructural modifications of cell membranes induced by “electroporation” on melanoma xenografts. Microscopy Research and Technique, 70(12), 1041–1050.  https://doi.org/10.1002/jemt.20504.CrossRefPubMedGoogle Scholar
  59. Srikiatden, J., & Roberts, J. S. (2007). Moisture transfer in solid food materials: a review of mechanisms, models, and measurements. International Journal of Food Properties.  https://doi.org/10.1080/10942910601161672.
  60. Stankevič, V., Novickij, V., Balevičius, S., Žurauskiene, N., Baškys, A., Dervinis, A., & Bleizgys, V. (2013). Electroporation system generating wide range square-wave pulses for biological applications. In 2013 IEEE Biomedical Circuits and Systems Conference, BioCAS 2013.  https://doi.org/10.1109/BioCAS.2013.6679633.
  61. Suwandy, V., Carne, A., van de Ven, R., Bekhit, A. E. D. A., & Hopkins, D. L. (2015). Effect of pulsed electric field treatment on hot-boned muscles of different potential tenderness. Meat Science.  https://doi.org/10.1016/j.meatsci.2015.02.009.
  62. Toepfl, S., & Heinz, V. (2007). Application of pulsed electric fields to improve mass transfer in dry cured meat products. Fleischwirtschaft Int, 22, 62–64.Google Scholar
  63. Toepfl, S., & Knorr, D. (2006). Pulsed electric fields as a pretreatment technique in drying processes. Stewart Postharvest Review, 2(4), 1–6.  https://doi.org/10.2212/spr.2006.4.3.CrossRefGoogle Scholar
  64. van der Sman, R. G. M. (2013). Modeling cooking of chicken meat in industrial tunnel ovens with the Flory-Rehner theory. Meat Science, 95(4), 940–957.  https://doi.org/10.1016/j.meatsci.2013.03.027.CrossRefPubMedGoogle Scholar
  65. Vorobiev, E. I., & Lebovka, N. I. (2011). Enhancing extraction processes in the food industry series: contemporary food engineering. In Enhancing Extraction Processes in the Food Industry (pp. 25–83).  https://doi.org/10.1201/b11241.
  66. Weaver, J. C., & Chizmadzhev, Y. A. (1996). Theory of electroporation: a review. Bioelectrochemistry and Bioenergetics, 41(2), 135–160.  https://doi.org/10.1016/S0302-4598(96)05062-3.CrossRefGoogle Scholar
  67. Xu, Z., Sun, D. W., Zeng, X. A., Liu, D., & Pu, H. (2015). Research developments in methods to reduce the carbon footprint of the food system: a review. Critical Reviews in Food Science and Nutrition.  https://doi.org/10.1080/10408398.2013.821593.
  68. Yarmush, M. L., Golberg, A., Serša, G., Kotnik, T., & Miklavčič, D. (2014). Electroporation-based technologies for medicine: principles, applications, and challenges. Annual Review of Biomedical Engineering, 16, 295–320.  https://doi.org/10.1146/annurev-bioeng-071813-104622.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Porter School of Environment and Earth SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.IBM Watson HealthHaifaIsrael
  3. 3.Escuela Superior de Medicina-Instituto Politécnico NacionalMexico CityMexico

Personalised recommendations