Food and Bioprocess Technology

, Volume 12, Issue 11, pp 1907–1916 | Cite as

Unfolding and Inhibition of Polyphenoloxidase Induced by Acidic pH and Mild Thermal Treatment

  • Lei Zhou
  • Tao Liao
  • Junping Liu
  • Liqiang Zou
  • Chengmei Liu
  • Wei LiuEmail author
Original Paper


The activity of polyphenoloxidase (PPO) treated by acidic pH and mild thermal processing was found to be closely related to the conformational changes. Weakly acidic environment (pH 4.0–6.0) resulted in reversible inhibition of activity and slight changes in the conformation, and refolding of PPO was observed after readjusting pH to 6.8. At pH lower than 4.0, PPO activity was strongly inhibited with great unfolding in conformation and all changes were irreversible. Acidic environment increased the susceptibility of PPO to thermal treatment, and greater changes in activity and conformation of PPO were observed under the combined treatment of acidic pH and mild thermal treatment. Besides, the inactivation of PPO induced by thermal treatment followed a biphasic kinetic model, and acidic pH increased the inactivation rate of labile and stable PPO. The combination of acidic pH and mild thermal processing expected to avoid the nutritional loss and sensory damage in fruits and vegetables caused by severe acid or temperature.


Polyphenoloxidase Activity Conformation Acidic pH Mild thermal treatment Unfolding 


Funding Information

This study is financially supported by the National Natural Science Foundation of China (31860452), China Postdoctoral Science Foundation (2019M652288), Jiangxi Province Science Foundation for Youths (20181BAB214019), and Jiangxi Province Education Department Science Foundation (GJJ160190).


  1. Altunkaya, A., & Gökmen, V. (2012). Partial purification and characterization of polyphenoloxidase from durum wheat (Triticum durum L.). Journal of Cereal Science, 55(3), 300–304.Google Scholar
  2. Awuah, G. B., Ramaswamy, H. S., & Economides, A. (2007). Thermal processing and quality: principles and overview. Chemical Engineering and Processing: Process Intensification, 46(6), 584–602.Google Scholar
  3. Baltaciohlu, H., Bayindirli, A., Severcan, M., & Severcan, F. (2015). Effect of thermal treatment on secondary structure and conformational change of mushroom polyphenol oxidase (PPO) as food quality related enzyme: A FTIR study. Food Chemistry, 187, 263–269.Google Scholar
  4. Batista, K. A., Batista, G. L. A., Alves, G. L., & Fernandes, K. F. (2014). Extraction, partial purification and characterization of polyphenol oxidase from Solanum lycocarpum fruits. Journal of Molecular Catalysis B: Enzymatic, 102, 211–217.Google Scholar
  5. Bravo, K., & Osorio, E. (2016). Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit. Food Chemistry, 197(Pt A), 185–190.PubMedGoogle Scholar
  6. Broeck, I. V. D., Ludikhuyze, L. R., Loey, A. M. V., & Hendrickx, M. E. (2000). Inactivation of orange pectinesterase by combined high-pressure and -temperature treatments: a kinetic study. Journal of Agricultural & Food Chemistry, 48(5), 1960–1970.Google Scholar
  7. Chakraborty, S., Rao, P. S., & Mishra, H. N. (2014). Effect of pH on enzyme inactivation kinetics in high-pressure processed pineapple (Ananas comosus L.) puree using response surface methodology. Food and Bioprocess Technology, 7(12), 3629–3645.Google Scholar
  8. Espín, J. C., Jolivet, S., & Wichers, H. J. (1998). Inhibition of mushroom polyphenol oxidase by agaritine. Journal of Agricultural and Food Chemistry, 46(8), 2976–2980.Google Scholar
  9. Gouzi, H., Depagne, C., & Coradin, T. (2012). Kinetics and thermodynamics of the thermal inactivation of polyphenol oxidase in an aqueous extract from Agaricus bisporus. Journal of Agricultural & Food Chemistry, 60(1), 500–506.Google Scholar
  10. Goyeneche, R., Scala, K. D., & Roura, S. (2013). Biochemical characterization and thermal inactivation of polyphenol oxidase from radish (Raphanus sativus var. sativus). LWT - Food Science and Technology, 54(1), 57–62.Google Scholar
  11. Hu, W. J., Yan, L., Park, D., Jeong, H. O., Chung, H. Y., Yang, J. M., Ye, Z. M., & Qian, G. Y. (2012). Kinetic, structural and molecular docking studies on the inhibition of tyrosinase induced by arabinose. International Journal of Biological Macromolecules, 50(3), 694–700.PubMedGoogle Scholar
  12. Ioniţă, E., Aprodu, I., Stănciuc, N., Râpeanu, G., & Bahrim, G. (2014). Advances in structure–function relationships of tyrosinase from Agaricus bisporus – Investigation on heat-induced conformational changes. Food Chemistry, 156(2), 129–136.PubMedGoogle Scholar
  13. Ionita, E., Stanciuc, N., Aprodu, I., Rapeanu, G., & Bahrim, G. (2014). pH-induced structural changes of tyrosinase from Agaricus bisporus using fluorescence and in silico methods. Journal of the Science of Food and Agriculture, 94(11), 2338–2344.PubMedGoogle Scholar
  14. Kanade, S. R., Paul, B., Rao, A. G., & Gowda, L. R. (2006). The conformational state of polyphenol oxidase from field bean (Dolichos lablab) upon SDS and acid-pH activation. Biochemical Journal, 395(3), 551–562.PubMedPubMedCentralGoogle Scholar
  15. Klabunde, T., Eicken, C., Sacchettini, J. C., & Krebs, B. (1998). Crystal structure of a plant catechol oxidase containing a dicopper center. Nature Structural Biology, 5(12), 1084–1090.PubMedGoogle Scholar
  16. Kunugi, S. (1993). Modification of biopolymer functions by high pressure. Progress in Polymer Science, 18(4), 805–838.Google Scholar
  17. Liu, W., Zou, L. Q., Liu, J. P., Zhang, Z. Q., Liu, C. M., & Liang, R. H. (2013). The effect of citric acid on the activity, thermodynamics and conformation of mushroom polyphenoloxidase. Food Chemistry, 140(1-2), 289–295.PubMedGoogle Scholar
  18. Lu, X., Sun, D., Li, Y., Shi, W., & Sun, G. (2011). Pre- and post-harvest salicylic acid treatments alleviate internal browning and maintain quality of winter pineapple fruit. Scientia Horticulturae, 130(1), 97–101.Google Scholar
  19. Mayer, A. M. (2006). Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry, 67(21), 2318–2331.PubMedGoogle Scholar
  20. McCord, J. D., & Kilara, A. (1983). Control of enzymatic browning in processed mushrooms (Agaricus bisporus). Journal of Food Science, 48(5), 1479–1484.Google Scholar
  21. McEvily, A. J., Iyengar, R., & Otwell, W. S. (1992). Inhibition of enzymatic browning in foods and beverages. Critical Reviews in Food Science and Nutrition, 32(3), 253–273.PubMedGoogle Scholar
  22. Mosneaguta, R., Alvarez, V., & Barringer, S. A. (2012). The effect of antibrowning agents on inhibition of potato browning, volatile organic compound profile, and microbial inhibition. Journal of Food Science, 77(11), 1234–1240.Google Scholar
  23. Palma-Orozco, G., Marrufo-Hernandez, N. A., Sampedro, J. G., & Najera, H. (2014). Purification and partial biochemical characterization of polyphenol oxidase from mango (Mangifera indica cv. Manila). Journal of Agricultural and Food Chemistry, 62(40), 9832–9840.PubMedGoogle Scholar
  24. Pellicer, J. A., Navarro, P., & Gómez-López, V. M. (2018). Pulsed light inactivation of mushroom polyphenol oxidase: a fluorometric and spectrophotometric study. Food and Bioprocess Technology, 11(3), 603–609.Google Scholar
  25. Saki, N., Akin, M., Alici, E. H., & Arabaci, G. (2018). Partial purification and characterization of polyphenol oxidase from the wild edible mushroom Lepiota Procera using three-phase partitioning. International Journal of Food Engineering, 14(9-10), 1–9.Google Scholar
  26. Siddiq, M., & Dolan, K. D. (2017). Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum L.). Food Chemistry, 218, 216–220.PubMedGoogle Scholar
  27. Siguemoto, E. S., Pereira, L. J., & Gut, J. A. W. (2018). Inactivation kinetics of pectin methylesterase, polyphenol oxidase, and peroxidase in cloudy apple juice under microwave and conventional heating to evaluate non-thermal microwave effects. Food and Bioprocess Technology, 11(7), 1359–1369.Google Scholar
  28. Sulaiman, A., Ming, J. S., Farid, M., & Silva, F. V. M. (2015). Thermosonication for polyphenoloxidase inactivation in fruits: modeling the ultrasound and thermal kinetics in pear, apple and strawberry purees at different temperatures. Journal of Food Engineering, 165, 133–140.Google Scholar
  29. Terefe, N. S., Yang, Y. H., Knoerzer, K., Buckow, R., & Versteeg, C. (2010). High pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innovative Food Science & Emerging Technologies, 11(1), 52–60.Google Scholar
  30. Terefe, N. S., Buckow, R., & Versteeg, C. (2014). Quality-related enzymes in fruit and vegetable products: effects of novel food processing technologies, part 1: high-pressure processing. Critical Reviews in Food Science and Nutrition, 54(1), 24–63.PubMedGoogle Scholar
  31. Todaro, A., Peluso, O., Catalano, A. E., Mauromicale, G., & Spagna, G. (2010). Polyphenol oxidase activity from three sicilian artichoke [Cynara cardunculus L. Var. scolymus L. (Fiori)] cultivars: studies and technological application on minimally processed production. Journal of Agricultural & Food Chemistry, 58(3), 1714–1718.Google Scholar
  32. Wang, Y., Zhang, G., Yan, J., & Gong, D. (2014). Inhibitory effect of morin on tyrosinase: insights from spectroscopic and molecular docking studies. Food Chemistry, 163, 226–233.PubMedGoogle Scholar
  33. Weemaes, C. A., Ludikhuyze, L. R., Van den Broeck, I., & Hendrickx, M. E. (1998). Effect of pH on pressure and thermal inactivation of avocado polyphenol oxidase: a kinetic study. Journal of Agricultural and Food Chemistry, 46(7), 2785–2792.Google Scholar
  34. Wu, J., Gao, J., Chen, H., Liu, X., Cheng, W., Ma, X., et al. (2013). Purification and characterization of polyphenol oxidase from Agaricus bisporus. International Journal of Food Properties, 16(7), 1483–1493.Google Scholar
  35. Yi, J., Jiang, B., Zhang, Z., Liao, X., Zhang, Y., & Hu, X. (2012). Effect of ultrahigh hydrostatic pressure on the activity and structure of mushroom (Agaricus bisporus) polyphenoloxidase. Journal of Agricultural & Food Chemistry, 60(2), 593–599.Google Scholar
  36. Zhong, J. Z., Liu, W., Liu, C. M., Wang, Q. H., Li, T., Tu, Z. C., Luo, S. J., Cai, X. F., & Xu, Y. J. (2012). Aggregation and conformational changes of bovine β-lactoglobulin subjected to dynamic high-pressure microfluidization in relation to antigenicity. Journal of Dairy Science, 95(8), 4237–4245.PubMedGoogle Scholar
  37. Zhou, L., Liu, W., Xiong, Z., Zou, L., Chen, J., Liu, J., & Zhong, J. (2016a). Different modes of inhibition for organic acids on polyphenoloxidase. Food Chemistry, 199, 439–446.PubMedGoogle Scholar
  38. Zhou, L., Liu, W., Xiong, Z., Zou, L., Liu, J., Zhong, J., & Chen, J. (2016b). Effect of ultrasound combined with malic acid on the activity and conformation of mushroom (Agaricus bisporus) polyphenoloxidase. Enzyme and Microbial Technology, 90, 61–68.PubMedGoogle Scholar
  39. Zhou, L., Liu, W., Zou, L., Xiong, Z., Hu, X., & Chen, J. (2017a). Aggregation and conformational change of mushroom (Agaricus bisporus) polyphenoloxidase subjected to thermal treatment. Food Chemistry, 214, 423–431.PubMedGoogle Scholar
  40. Zhou, L., Xiong, Z., Liu, W., & Zou, L. (2017b). Different inhibition mechanisms of gentisic acid and cyaniding-3-O-glucoside on polyphenoloxidase. Food Chemistry, 234, 445–454.PubMedGoogle Scholar
  41. Zhou, L., Liu, W., Stockmann, R., & Terefe, N. S. (2018a). Effect of citric acid and high pressure thermal processing on enzyme activity and related quality attributes of pear puree. Innovative Food Science & Emerging Technologies, 45, 196–207.Google Scholar
  42. Zhou, L., Liu, W., & Terefe, N. S. (2018b). The inactivation kinetics of soluble and membrane-bound polyphenol oxidase in pear during thermal and high-pressure processing. Food and Bioprocess Technology, 11(5), 1039–1049.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lei Zhou
    • 1
    • 2
  • Tao Liao
    • 1
  • Junping Liu
    • 1
  • Liqiang Zou
    • 1
  • Chengmei Liu
    • 1
  • Wei Liu
    • 1
    • 3
    Email author
  1. 1.State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
  2. 2.School of Life SciencesNanchang UniversityNanchangChina
  3. 3.National R&D Center for Freshwater Fish ProcessingJiangxi Normal UniversityNanchangChina

Personalised recommendations