Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 9, pp 1516–1526 | Cite as

Determining Shelf Life of Ready-to-Eat Macaroni and Cheese in High Barrier and Oxygen Scavenger Packaging Sterilized via Microwave-Assisted Thermal Sterilization

  • Juhi Patel
  • Saleh Al-Ghamdi
  • Hongchao Zhang
  • Renata Queiroz
  • Juming Tang
  • Tom Yang
  • Shyam S. SablaniEmail author
Original Paper

Abstract

Ready-to-eat macaroni and cheese filled in novel oxygen scavenger and metal oxide–coated high-barrier polymer packages were processed in pilot scale 915-MHz microwave-assisted thermal sterilization system (MATS). Also, aluminum foil packages were processed in Allpax retort system to compare packaging performance. Physicochemical and sensory attributes of macaroni and cheese packaged in different oxygen and water vapor transmission rates were evaluated and stored for 6 months at 37.8 °C. Findings showed oxygen transmission rate (OTR) increase by 2–7 times and water vapor transmission rate (WVTR) increase by 2.5–24 times after MATS processing. OTR of polymeric packaging had no significant effect on vitamin A and vitamin E, shear force, and food color. Comparable results between polymeric and aluminum foil packaging were observed throughout the shelf life. This indicates that oxygen scavenger and high-barrier packaging with OTRs ~ 0.03–0.34 cc/m2 day and WVTRs ~ 0.62–7.19 g/m2 day can be used for ready-to-eat meals with extended shelf life for soldiers and astronauts.

Keywords

Oxygen scavenger packaging Oxygen transmission rate Water vapor transmission rate Vitamin A Vitamin E Shelf life 

Notes

Acknowledgments

The authors would like to thank Dr. Zhongwei Tang for his technical help. In addition, the authors would like to thank Kuraray America, Inc. (Houston, TX, USA), Toppan Printing Co, LTD. (Japan) and Mitsubishi Chemical Corporation (Japan) for providing the packaging materials.

Funding Information

This work was supported by the USDA National Institute of Food and Agriculture Research grants #2016-67017-24597 and #2016-68003-24840, and Hatch project #1016366.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Al-Ghamdi, S., Rasco, B., Tang, J., Barbosa-Cánovas, G. V., & Sablani, S. S. (2019). Role of package headspace on multilayer films subjected to high hydrostatic pressure. Packaging Technology and Science, 32(5), 247–257.CrossRefGoogle Scholar
  2. Anderson, J. S., & Sunderland, R. (2002). Effect of extruder moisture and dryer processing temperature on vitamin c and e and astaxanthin stability. Aquaculture, 207(1-2), 137–149.CrossRefGoogle Scholar
  3. Baisier, W. M., & Labuza, T. P. (1992). Maillard browning kinetics in a liquid model system. Journal of Agricultural and Food Chemistry, 40(5), 707–713.CrossRefGoogle Scholar
  4. Bhunia, K., Zhang, H., Liu, F., Rasco, B., Tang, J., & Sablani, S. S. (2016). Morphological changes in multilayer polymeric films induced after microwave-assisted pasteurization. Innovative Food Science & Emerging Technologies, 38, 124–130.CrossRefGoogle Scholar
  5. Bhunia, K., Ovissipour, M., Rasco, B., Tang, J., & Sablani, S. S. (2017). Oxidation–reduction potential and lipid oxidation in ready-to-eat blue mussels in red sauce: criteria for package design. Journal of the Science of Food and Agriculture, 97(1), 324–332.CrossRefPubMedGoogle Scholar
  6. Bornhorst, E. R., Tang, J., Sablani, S. S., & Barbosa-Cánovas, G. V. (2017). Thermal pasteurization process evaluation using mashed potato model food with Maillard reaction products. LWT- Food Science and Technology, 82, 454–463.CrossRefGoogle Scholar
  7. Cardello, A. V., Schutz, H. G., & Lesher, L. L. (2007). Consumer perceptions of foods processed by innovative and emerging technologies: a conjoint analytic study. Innovative Food Science & Emerging Technologies, 8(1), 73–83.CrossRefGoogle Scholar
  8. Carini, E., Curti, E., Littardi, P., Luzzini, M., & Vittadini, E. (2013). Water dynamics of ready to eat shelf stable pasta meals during storage. Innovative Food Science & Emerging Technologies, 17, 163–168.CrossRefGoogle Scholar
  9. Catauro, P. M., & Perchonok, M. H. (2012). Assessment of the long-term stability of retort pouch foods to support extended duration spaceflight. Journal of Food Science, 77(1), S29–S39.CrossRefPubMedGoogle Scholar
  10. Cooper, M., Perchonok, M., & Douglas, G. L. (2017). Initial assessment of the nutritional quality of the space food system over three years of ambient storage. npj Microgravity, 3(1), 17.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dhawan, S., Varney, C., Barbosa-Cánovas, G. V., Tang, J., Selim, F., & Sablani, S. S. (2014). The impact of microwave-assisted thermal sterilization on the morphology, free volume, and gas barrier properties of multilayer polymeric films. Journal of Applied Polymer Science, 131(12), 40376, 1–8.Google Scholar
  12. Diantom, A., Carini, E., Curti, E., Cassotta, F., D’Alessandro, A., & Vittadini, E. (2016). Effect of water and gluten on physico-chemical properties and stability of ready to eat shelf-stable pasta. Food Chemistry, 195, 91–96.CrossRefPubMedGoogle Scholar
  13. Favaro, R. M., Ferreira, J. F., Desai, I. D., & de Oliveira, J. D. (1991). Studies on fortification of refined soybean oil with all-trans-retinyl palmitate in Brazil: stability during cooking and storage. Journal of Food Composition and Analysis, 4(3), 237–244.CrossRefGoogle Scholar
  14. Frankel, E. N. (2012). Lipid oxidation. 2nd Edition: Cambridge, UK: Woodhead Publishing Limited.Google Scholar
  15. Holdsworth, S. D., Simpson, R., & Barbosa-Cánovas, G. V. (2008). Thermal processing of packaged foods (Vol. 284). New York: Springer.Google Scholar
  16. Johnson, D. R., Inchingolo, R., & Decker, E. A. (2018). The ability of oxygen scavenging packaging to inhibit vitamin degradation and lipid oxidation in fish oil-in-water emulsions. Innovative Food Science & Emerging Technologies, 47, 467–475.CrossRefGoogle Scholar
  17. Joyner, H. S., Jones, K. E., & Rasco, B. A. (2016). Microwave Pasteurization of Cooked Pasta: effect of process parameters on texture and quality for heat-and-eat and ready-to-eat meals. Journal of Food Science, 81(6), E1447–E1456.CrossRefGoogle Scholar
  18. Kristensen, D., Hansen, E., Arndal, A., Trinderup, R. A., & Skibsted, L. H. (2001). Influence of light and temperature on the colour and oxidative stability of processed cheese. International Dairy Journal, 11(10), 837–843.CrossRefGoogle Scholar
  19. Ling, B., Tang, J., Kong, F., Mitcham, E., & Wang, S. (2015). Kinetics of food quality changes during thermal processing: a review. Food and Bioprocess Technology, 8(2), 343–358.CrossRefGoogle Scholar
  20. Lopez-Cervantes, J., Sanchez-Machado, D., & Rios-Vazquez, N. (2006). High-performance liquid chromatography method for the simultaneous quantification of retinol, α-tocopherol, and cholesterol in shrimp waste hydrolysate. Journal of Chromatography A, 1105(1-2), 135–139.CrossRefPubMedGoogle Scholar
  21. Mokwena, K. K., Tang, J., Dunne, C. P., Yang, T. C., & Chow, E. (2009). Oxygen transmission of multilayer EVOH films after microwave sterilization. Journal of Food Engineering, 92(3), 291–296.CrossRefGoogle Scholar
  22. Pascall, M. A., & Han, J. H. (2018). Packaging for nonthermal processing of food. 2nd Edition: Hoboken, NJ: Wiley-Blackwell.Google Scholar
  23. Perchonok, M. H., Cooper, M. R., & Catauro, P. M. (2012). Mission to Mars: food production and processing for the final frontier. Annual Review of Food Science and Technology, 3(1), 311–330.CrossRefPubMedGoogle Scholar
  24. Robertson, G. L. (2005). Food packaging: principles and practice. 2nd Edition: Boca Raton, FL: CRC Press.Google Scholar
  25. Seybold, C., Fröhlich, K., Bitsch, R., Otto, K., & Böhm, V. (2004). Changes in contents of carotenoids and vitamin E during tomato processing. Journal of Agricultural and Food Chemistry, 52(23), 7005–7010.CrossRefPubMedGoogle Scholar
  26. Shumaker, E., & Wendorff, W. (1998). Factors affecting pink discoloration in annatto-colored pasteurized process cheese. Journal of Food Science, 63(5), 828–831.CrossRefGoogle Scholar
  27. Sissons, M. J., Schlichting, L. M., Egan, N., Aarts, W. A., Harden, S., & Marchylo, B. A. (2008). A standardized method for the instrumental determination of cooked spaghetti firmness. Cereal Chemistry, 85(3), 440–444.CrossRefGoogle Scholar
  28. Sonar, C., Paccola, C., Al-Ghamdi, S., Rasco, B., Tang, J., & Sablani, S. S. (2019). Stability of color, β-carotene, and ascorbic acid in thermally pasteurized carrot puree to the storage temperature and gas barrier properties of selected packaging films. Journal of Food Process Engineering, 42(4), e13074, 1–2Google Scholar
  29. Tang, J. (2015). Unlocking potentials of microwaves for food safety and quality. Journal of Food Science, 80(8), E1776–E1793.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Van Boekel, M. A. (2008). Kinetic modeling of food quality: a critical review. Comprehensive Reviews in Food Science and Food Safety, 7(1), 144–158.CrossRefGoogle Scholar
  31. Wang, J., Tang, J., Rasco, B., Sablani, S. S., Ovissipour, M., & Qu, Z. (2018). Kinetics of quality changes of shrimp (Litopenaeus setiferus) during pasteurization. Food and Bioprocess Technology, 11(5), 1027–1038.CrossRefGoogle Scholar
  32. Wilson, N., & Shah, N. (2007). Microencapsulation of vitamins. ASEAN Food Journal, 14(1), 1.Google Scholar
  33. Zhang, H., Bhunia, K., Kuang, P., Tang, J., Rasco, B., Mattinson, D. S., & Sablani, S. S. (2016a). Effects of oxygen and water vapor transmission rates of polymeric pouches on oxidative changes of microwave-sterilized mashed potato. Food and Bioprocess Technology, 9(2), 341–351.CrossRefGoogle Scholar
  34. Zhang, H., Tang, Z. W., Rasco, B., Tang, J., & Sablani, S. S. (2016b). Shelf-life modeling of microwave-assisted thermal sterilized mashed potato in polymeric pouches of different gas barrier properties. Journal of Food Engineering, 183, 65–73.CrossRefGoogle Scholar
  35. Zhang, H., Bhunia, K., Munoz, N., Li, L., Dolgovskij, M., Rasco, B., Tang, J., & Sablani, S. S. (2017). Linking morphology changes to barrier properties of polymeric packaging for microwave-assisted thermal sterilized food. Journal of Applied Polymer Science, 134(44), 45481, 1–10.Google Scholar
  36. Zhang, H., Patel, J., Bhunia, K., Al-Ghamdi, S., Sonar, C., Ross, C., et al. (2019). Color, vitamin C, β-carotene and sensory quality retention in microwave-assisted thermally sterilized sweet potato puree: effects of polymeric package gas barrier during storage. Food Packaging and Shelf Life, (21), 100324, 1–9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological Systems EngineeringWashington State UniversityWashingtonUSA
  2. 2.Department of Agricultural EngineeringCollege of Food and Agriculture Sciences, King Saud UniversityRiyadhSaudi Arabia
  3. 3.Development and Engineering CenterU.S. Army Natick Soldier ResearchNatickUSA

Personalised recommendations