Separation of Whey Protein Aggregates by Means of Continuous Centrifugation

  • Nicole HallerEmail author
  • Ulrich Kulozik
Original Paper


This study investigates the applicability of decanter centrifuges for high efficient separation of valuable proteins from whey. Thus, two different types of protein aggregates, α-lactalbumin (α-la) and β-lactoglobulin (β-lg), were produced by means of selective thermal aggregation. The two aggregate suspensions were investigated for their particle characteristics, sedimentation, and consolidation behavior, and were finally separated in a lab-scale decanter. They showed severe differences in particle size distribution, particle shape, and in the underlying molecular binding mechanisms, all affecting their separability. In scale-down experiments, the non-covalently stabilized α-la aggregates presented sedimentation enhancing flocculation, and a high compressibility of the cake. However, the beneficial sedimentation effects were not observed in the decanter, as the centrifugal forces resulted in particle breakdown. Moreover, the high adhesiveness of sludge-like sediment impeded the discharge. Under best investigated conditions, a clarification around 70% of the supernatant and a dry solid content of 25% in sediment was achieved. Contrary to that, the β-lg aggregates, stabilized by disulfide bonds, were rigid aggregates comprising a median size of 109 μm with irregular shapes. They presented low compressibility in scale-down testing but were discharged as a free-flowing powder from the decanter. The sediment dryness of maximal 40% was attributed to enclosed liquid through thermal aggregation process, which is also reflected in the low particle density. This study demonstrates the successful application of a decanter for the separation of whey proteins and contributes to the understanding of aggregate separability by means of continuous centrifuges.


α-lactalbumin β-lactoglobulin Whey protein aggregates Decanter centrifuge Sedimentation Consolidation 



We gratefully thank Annette Brümmer-Rolf and Andreas Greßlinger for experimental support and fruitful discussions.

This IGF project of the FEI was supported via AiF (AiF 18126 N) within the program for promoting the Industrial Collective Research (IGF) of the German Ministry of Economic Affairs and Energy (BMWi), based on a resolution of the German Parliament.


  1. Abd El-Salam, M. H., El-Shibiny, S., & Salem, A. (2009). Factors affecting the functional properties of whey protein products: A review. Food Reviews International, 25(3), 251–270.Google Scholar
  2. Bargieł, M., & Tory, E. M. (2013). Extension of the Richardson–Zaki equation to suspensions of multisized irregular particles. International Journal of Mineral Processing, 120, 22–25.Google Scholar
  3. Bell, D. J., & Dunnill, P. (1982). The influence of precipitation reactor configuration on the centrifugal recovery of isoelectric soya protein precipitate. Biotechnology and Bioengineering, 24(11), 2319–2336.Google Scholar
  4. Booij, L., Merens, W., Markus, C. R., & van der Does, A. W. (2006). Diet rich in α-lactalbumin improves memory in unmedicated recovered depressed patients and matched controls. Journal of Psychopharmacology, 20(4), 526–535.Google Scholar
  5. Bramaud, C., Aimar, P., & Daufin, G. (1995). Thermal isoelectric precipitation of α-lactalbumin from a whey protein concentrate: Influence of protein–calcium complexation. Biotechnology and Bioengineering, 47(2), 121–130.Google Scholar
  6. Bramaud, C., Aimar, P., & Daufin, G. (1997a). Optimisation of a whey protein fractionation process based on the selective precipitation of α-lactalbumin. Le Lait, 77(3), 411–423.Google Scholar
  7. Bramaud, C., Aimar, P., & Daufin, G. (1997b). Whey protein fractionation: Isoelectric precipitation of α-lactalbumin under gentle heat treatment. Biotechnology and Bioengineering, 56(4), 391–397.Google Scholar
  8. Buscall, R., & White, L. R. (1987). The consolidation of concentrated suspensions. Part 1.—The theory of sedimentation. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 83(3), 873–891.Google Scholar
  9. Chatterton, D. E., Smithers, G., Roupas, P., & Brodkorb, A. (2006). Bioactivity of β-lactoglobulin and α-lactalbumin—Technological implications for processing. International Dairy Journal, 16(11), 1229–1240.Google Scholar
  10. Coe, H. S., & Clevenger, C. H. (1916). Methods for determining the capacities of slime-settling tanks. Transactions of the American Institute of Mining and Metallurgical Engineers, 60, 356–384.Google Scholar
  11. Croguennec, T., O’Kennedy, B. T., & Mehra, R. (2004). Heat-induced denaturation/aggregation of β-lactoglobulin A and B: Kinetics of the first intermediates formed. International Dairy Journal, 14(5), 399–409.Google Scholar
  12. Curvers, D., Saveyn, H., Scales, P. J., & Van der Meeren, P. (2009). A centrifugation method for the assessment of low pressure compressibility of particulate suspensions. Chemical Engineering Journal, 148(2–3), 405–413.Google Scholar
  13. Dannenberg, F., & Kessler, H.-G. (1988). Reaction kinetics of the denaturation of whey proteins in milk. Journal of Food Science, 53(1), 258–263.Google Scholar
  14. De Wit, J. N. (2009). Thermal behaviour of bovine β-lactoglobulin at temperatures up to 150 C. A review. Trends in Food Science & Technology, 20(1), 27–34.Google Scholar
  15. Dombrowski, J., Gschwendtner, M., & Kulozik, U. (2017). Evaluation of structural characteristics determining surface and foaming properties of β-lactoglobulin aggregates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 516, 286–295.Google Scholar
  16. Erabit, N., Flick, D., & Alvarez, G. (2014). Formation of β-lactoglobulin aggregates during thermomechanical treatments under controlled shear and temperature conditions. Journal of Food Engineering, 120, 57–68.Google Scholar
  17. Fernández, A., Menéndez, V., & Riera, F. A. (2012). α-Lactalbumin solubilisation from a precipitated whey protein concentrates fraction: pH and calcium concentration effects. International Journal of Food Science & Technology, 47(3), 467–474.Google Scholar
  18. Friedman, H. H., Whitney, J. E., & Szczesniak, A. S. (1963). The texturometer—A new instrument for objective texture measurement. Journal of Food Science, 28(4), 390–396.Google Scholar
  19. Griffin, W. G., Griffin, M. C. A., Martin, S. R., & Price, J. (1993). Molecular basis of thermal aggregation of bovine β-lactoglobulin A. Journal of the Chemical Society, Faraday Transactions, 89(18), 3395–3405.Google Scholar
  20. Håkansson, A., Svensson, M., Mossberg, A., Sabharwal, H., Linse, S., Lazou, I., LoÈnnerdal, B., & Svanborg, C. (2000). A folding variant of α-lactalbumin with bactericidal activity against Streptococcus pneumoniae. Molecular Microbiology, 35(3), 589–600.Google Scholar
  21. Heine, W., Radke, M., Wutzke, K. D., Peters, E., & Kundt, G. (1996). α-Lactalbumin-enriched low-protein infant formulas: A comparison to breast milk feeding. Acta Paediatrica, 85(9), 1024–1028.Google Scholar
  22. Hernández-Ledesma, B., Amigo, L., Recio, I., & Bartolomé, B. (2007). ACE-inhibitory and radical-scavenging activity of peptides derived from β-lactoglobulin f (19−25). Interactions with ascorbic acid. Journal of Agricultural and Food Chemistry, 55(9), 3392–3397.Google Scholar
  23. Hernández-Ledesma, B., Recio, I., & Amigo, L. (2008). β-Lactoglobulin as source of bioactive peptides. Amino Acids, 35(2), 257–265.Google Scholar
  24. Hillier, R. M., & Lyster, R. L. J. (1979). Whey protein denaturation in heated milk and cheese whey. Journal of Dairy Research, 46(1), 95–102.Google Scholar
  25. Kynch, G. J. (1952). A theory of sedimentation. Transactions of the Faraday Society, 48, 166–176.Google Scholar
  26. Leeb, E., Haller, N., & Kulozik, U. (2018). Effect of pH on the reaction mechanism of thermal denaturation and aggregation of bovine β-lactoglobulin. International Dairy Journal, 78, 103–111.Google Scholar
  27. Lerche, D., & Sobisch, T. (2007). Consolidation of concentrated dispersions of nano- and microparticles determined by analytical centrifugation. Powder Technology, 174(1), 46–49.Google Scholar
  28. Lien, E. L. (2003). Infant formulas with increased concentrations of α-lactalbumin. The American Journal of Clinical Nutrition, 77(6), 1555S–1558S.Google Scholar
  29. Loginov, M., Lebovka, N., & Vorobiev, E. (2014). Multistage centrifugation method for determination of filtration and consolidation properties of mineral and biological suspensions using the analytical photocentrifuge. Chemical Engineering Science, 107 277-289.Google Scholar
  30. Loginov, M., Zierau, A., Kavianpour, D., Lerche, D., Vorobiev, E., Gésan-Guiziou, G., Mahnic-Kalamiza, S., & Sobisch, T. (2017). Multistep centrifugal consolidation method for characterization of filterability of aggregated concentrated suspensions. Separation and Purification Technology, 183, 304–317.Google Scholar
  31. Lucena, E. M., Alvarez, S., Menéndez, C., Riera, F. A., & Alvarez, R. (2006). Beta-lactoglobulin removal from whey protein concentrates. Separation and Purification Technology, 52(2), 310–316.Google Scholar
  32. Markus, C. R., Jonkman, L. M., Lammers, J. H., Deutz, N. E. P., Messer, M. H., & Rigtering, N. (2005). Evening intake of α-lactalbumin increases plasma tryptophan availability and improves morning alertness and brain measures of attention. The American Journal of Clinical Nutrition, 81(5), 1026–1033.Google Scholar
  33. Maubois, J. L., Pierre, A., Fauquant, J., & Piot, M. (1987). Industrial fractionation of main whey proteins. Schaerbeek: International Dairy Federation.Google Scholar
  34. Maybury, J. P., Hoare, M., & Dunnill, P. (2000). The use of laboratory centrifugation studies to predict performance of industrial machines: Studies of shear-insensitive and shear-sensitive materials. Biotechnology and Bioengineering, 67(3), 265–273.Google Scholar
  35. Mehra, R., & Kelly, P. M. (2004). Whey protein fractionation using cascade membrane filtration. Bulletin-International Dairy Federation, (389), 40–44.Google Scholar
  36. Munro, P. A., & Van Til, H. J. (1988). Centrifugal dewatering of acid casein curd: Effect of casein manufacturing and centrifugation variables on curd compression in a laboratory centrifuge. Biotechnology and Bioengineering, 32(9), 1153–1157.Google Scholar
  37. Neyestani, T. R., Djalali, M., & Pezeshki, M. (2003). Isolation of α-lactalbumin, β-lactoglobulin, and bovine serum albumin from cow’s milk using gel filtration and anion-exchange chromatography including evaluation of their antigenicity. Protein Expression and Purification, 29(2), 202–208.Google Scholar
  38. Nicolai, T., Britten, M., & Schmitt, C. (2011). β-Lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloids, 25(8), 1945–1962.Google Scholar
  39. Outinen, M., Tossavainen, O., & Syväoja, E.-L. (1996). Chromatographic fractionation of α-lactalbumin and β-lactoglobulin with polystyrenic strongly basic anion exchange resins. LWT - Food Science and Technology, 29(4), 340–343.Google Scholar
  40. Pearce, R. J. (1983). Thermal separation of [beta]-lactoglobulin and [alpha]-lactalbumin in bovine cheddar cheese whey. Australian Journal of Dairy Technology, 38(4), 144.Google Scholar
  41. Pearce, R. J. (1991). Applications for cheese whey protein fractions. Food Research Quarterly, 51, 74–85.Google Scholar
  42. Pellegrini, A., Thomas, U., Bramaz, N., Hunziker, P., & von Fellenberg, R. (1999). Isolation and identification of three bactericidal domains in the bovine α-lactalbumin molecule. Biochimica et Biophysica Acta (BBA)-General Subjects, 1426(3), 439–448.Google Scholar
  43. Permyakov, E. A., & Berliner, L. J. (2000). α-Lactalbumin: Structure and function. FEBS Letters, 473(3), 269–274.Google Scholar
  44. Rammer, P., Groth-Pedersen, L., Kirkegaard, T., Daugaard, M., Rytter, A., Szyniarowski, P., Høyer-Hansen, M., Povlsen, L. K., Nylandsted, J., & Larsen, J. E. (2010). BAMLET activates a lysosomal cell death program in cancer cells. Molecular Cancer Therapeutics, 9(1), 24–32.Google Scholar
  45. Records, A., & Sutherland, K. (2001). Decanter centrifuge handbook. Elsevier.Google Scholar
  46. Richardson, J. F., & Zaki, W. N. (1954). The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chemical Engineering Science, 3(2), 65–73.Google Scholar
  47. Roefs, S. P. F. M., & de Kruif, K. G. (1994). A model for the denaturation and aggregation of β-lactoglobulin. European Journal of Biochemistry, 226(3), 883–889.Google Scholar
  48. Schultz, C. P. (2000). Illuminating folding intermediates. Nature Structural and Molecular Biology, 7(1), 7–10.Google Scholar
  49. Sobisch, T., & Lerche, D. (2000). Application of a new separation analyzer for the characterization of dispersions stabilized with clay derivatives. Colloid and Polymer Science, 278(4), 369–374.Google Scholar
  50. Stahl, W. H. (2004). Fest-Flüssig-Trennung. 2, Industrie-Zentrifugen. Maschinen-& Verfahrenstechnik: DrM Press.Google Scholar
  51. Tolkach, A., & Kulozik, U. (2008). Kinetic modeling of the thermal denaturation of bovine alpha-lactalbumin in a acidic pH-region and in the presence of a calcium complexing agent. Chemie Ingenieur Technik, 80(8), 1165–1173.Google Scholar
  52. Tolkach, A., Steinle, S., & Kulozik, U. (2005). Optimization of thermal pretreatment conditions for the separation of native α-lactalbumin from whey protein concentrates by means of selective denaturation of β-lactoglobulin. Journal of Food Science, 70(9), E557–E566.Google Scholar
  53. Toro-Sierra, J., Tolkach, A., & Kulozik, U. (2013). Fractionation of α-lactalbumin and β-lactoglobulin from whey protein isolate using selective thermal aggregation, an optimized membrane separation procedure and resolubilization techniques at pilot plant scale. Food and Bioprocess Technology, 6(4), 1032–1043.Google Scholar
  54. Trabulsi, J., Capeding, R., Lebumfacil, J., Ramanujam, K., Feng, P., McSweeney, S., Harris, B., & DeRusso, P. (2011). Effect of an α-lactalbumin-enriched infant formula with lower protein on growth. European Journal of Clinical Nutrition, 65(2), 167–174.Google Scholar
  55. Turhan, K. N., & Etzel, M. R. (2004). Whey protein isolate and α-lactalbumin recovery from lactic acid whey using cation-exchange chromatography. Journal of Food Science, 69(2), fep66–fep70.Google Scholar
  56. Usher, S. P., Studer, L. J., Wall, R. C., & Scales, P. J. (2013). Characterisation of dewaterability from equilibrium and transient centrifugation test data. Chemical Engineering Science, 93, 277–291.Google Scholar
  57. Wakeman, R. J. (2007). Separation technologies for sludge dewatering. Journal of Hazardous Materials, 144(3), 614–619.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chair for Food and Bioprocess EngineeringTechnical University MunichFreisingGermany
  2. 2.ZIEL – Institute for Food & HealthFreisingGermany

Personalised recommendations