Advertisement

Quality-Based Thermokinetic Optimization of Ready-to-Eat Whole Edible Crab (Cancer pagurus) Pasteurisation Treatments

  • S. Condón-Abanto
  • J. Raso
  • C. Arroyo
  • J. Lyng
  • Ignacio Álvarez
Original Paper
  • 91 Downloads

Abstract

Traditional processing practices used in the manufacture of ready-to-eat edible crab products include a double-heat treatment involving an initial cooking step followed by washing and packaging and finally, a second heat pasteurisation. The latter, pasteurisation step, results in the most severe impact on product quality. The main objective of this research was to optimise this pasteurisation step using quality index degradation kinetic approach. Preliminary work involved the characterisation of temperature rise in the crab cold-spot during pasteurisation. Equivalent treatments (F90°C10°C = 10 min) were defined in order to assess the impact of pasteurisation temperature on different crab quality indexes in both crab meat types, white and brown. Colour degradation of crab white meat was defined as the critical quality parameter to be monitored during thermal pasteurisation. The effect of time and temperature on the kinetics of white meat colour change (ΔE*) were characterised and fitted to an exponential equation. Following this, an industry focus group was used to define white meat colour change vs product quality and defined ‘good’ (ΔE* ≤ 7), ‘acceptable’ (7 < ΔE* < 9) and ‘unacceptable’ (ΔE* ≥ 9) quality. Finally, using the developed equations, optimal pasteurisation conditions were defined and validated. To produce ‘good’ quality crab, optimal temperatures ranged between 96 and 100 °C while temperatures between 104 and 108 °C produced ‘acceptable’ quality in crabs of 400 and 800 g, respectively. Overall, the results show that the equations obtained could be used in a decision support system (DSS) to define heat pasteurisation conditions to optimise the quality of ready-to-eat edible crab.

Keywords

Product quality Thermal processing Pasteurisation Colour kinetics Edible crab 

Notes

Funding Information

The authors wish to acknowledge the financial support from the Food Institutional Research Measure (FIRM) funded by the Irish Department of Agriculture, Food and the Marine (project no. R13885) and to the European Regional Development Fund, MINECO-CICYT (AGL2015-69565-P) and the Department of Innovation Research and University of the Aragon Government and European Social Fund (ESF).

References

  1. Adekunte, A. O., Tiwari, B. K., Cullen, P. J., Scannell, A. G. M., & O’Donnell, C. P. (2010). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 122(3), 500–507.CrossRefGoogle Scholar
  2. Anacleto, P., Teixeira, B., Marques, P., Pedro, S., Nunes, M. L., & Marques, A. (2011). Shelf-life of cooked edible crab (Cancer pagurus) stored under refrigerated conditions. LWT - Food Science and Technology, 44(6), 1376–1382.CrossRefGoogle Scholar
  3. AOAC (2000). Official methods of analysis of the AOAC journal of the association of Official Analytical Chemists (17th edition), Arlington, Virginia.Google Scholar
  4. Barrento, S., Marques, A., Pedro, S., Vaz-Pires, P., & Nunes, M. L. (2008). The trade of live crustaceans in Portugal: space for technological improvements. ICES Journal of Marine Science: Journal du Conseil, 65(4), 551–559.CrossRefGoogle Scholar
  5. Barrento, S., Marques, A., Teixeira, B., Anacleto, P., Carvalho, M. L., Vaz-Pires, P., & Nunes, M. L. (2009). Macro and trace elements in two populations of brown crab Cancer pagurus: ecological and human health implications. Journal of Food Composition and Analysis, 22(1), 65–71.CrossRefGoogle Scholar
  6. Barrento, S., Marques, A., Vaz-Pires, P., & Nunes, M. L. (2010). Live shipment of immersed crabs Cancer pagurus from England to Portugal and recovery in stocking tanks: stress parameter characterization. ICES Journal of Marine Science: Journal du Conseil, 67(3), 435–443.CrossRefGoogle Scholar
  7. Condón-Abanto, S., Arroyo, C., Álvarez, I., Brunton, N., Whyte, P., & Lyng, J. G. (2018). An assessment of the application of ultrasound in the processing of ready-to-eat whole brown crab (Cancer pagurus). Ultrasonics Sonochemistry, 40(Part A), 497–504.CrossRefGoogle Scholar
  8. Edwards, E. & Early, J.C. (2001). Catching, handling and processing crabs. Torry advisory note No. 26, Ministry of technology, Torry research station, Her majesty’s stationery office.Google Scholar
  9. EUROSTAT (2015) http://ec.europa.eu/eurostat/data/database ( last accessed 4.05.2016).
  10. Fante, L., & Noreña, C. P. Z. (2012). Enzyme inactivation kinetics and colour changes in garlic (Allium sativum L.) blanched under different conditions. Journal of Food Engineering, 108(3), 436–443.CrossRefGoogle Scholar
  11. FDA, (2000). Kinetics of microbial inactivation for alternative food processing technologies. https://www.fda.gov/downloads/Food/FoodborneIllnessContaminants/UCM545175.pdf. Last accessed March 2018.
  12. FDA (2011). Fish and fishery products hazards and controls guidance, fourth edn. Technical report. US Department of Health and Human Services.Google Scholar
  13. Gökoðlu, N., & Yerlikaya, P. (2003). Determinaton of proximate composition and mineral contents of blue crab (Callinectes sapidus) and swim crab (Portunus pelagicus) caught off the Gulf of Antalya. Food Chemistry, 80(4), 495–498.CrossRefGoogle Scholar
  14. Hadjal, T., Dhuique-Mayer, C., Madani, K., Dornier, M., & Achir, N. (2013). Thermal degradation kinetics of xanthophylls from blood orange in model and real food systems. Food Chemistry, 138(4), 2442–2450.CrossRefGoogle Scholar
  15. Haefner, J. W. (2005). Modelling biological systems: principles and applications. New York: Springer 463pp.Google Scholar
  16. Hong, G. P., Flick, G. J., & Knobl, G. M. (1993). Development of a prediction computer model for blue crab meat yield based on processing and biological variables. Journal of Aquatic Food Product Technology, 1(3-4), 109–132.CrossRefGoogle Scholar
  17. Huss, H. H. (1997). Control of indigenous pathogenic bacteria in seafood. Food Control, 8(2), 91–98.CrossRefGoogle Scholar
  18. IFT (2013). Kinetic models for microbial survival during processing. http://www.ift.org/knowledge-center/read-ift-publications/science-reports/research-summits/kinetic-models.aspx. Last accesed January 2018.
  19. Jaiswal, A. K., Gupta, S., & Abu-Ghannam, N. (2012). Kinetic evaluation of colour, texture, polyphenols and antioxidant capacity of Irish York cabbage after blanching treatment. Food Chemistry, 131(1), 63–72.CrossRefGoogle Scholar
  20. Kong, F., Tang, J., Lin, M., & Rasco, B. (2008). Thermal effects on chicken and salmon muscles: tenderness, cook loss, area shrinkage, collagen solubility and microstructure. LWT - Food Science and Technology, 41(7), 1210–1222.CrossRefGoogle Scholar
  21. Kong, F., Tang, J., Rasco, B., & Crapo, C. (2007). Kinetics of salmon quality changes during thermal processing. Journal of Food Engineering, 83(4), 510–520.CrossRefGoogle Scholar
  22. Liaotrakoon, W., De Clercq, N., Van Hoed, V., Van de Walle, D., Lewille, B., & Dewettinck, K. (2013). Impact of thermal treatment on physicochemical, antioxidative and rheological properties of white-flesh and red-flesh dragon fruit (Hylocereus spp.) purees. Food and Bioprocess Technology, 6(2), 416–430.CrossRefGoogle Scholar
  23. Ling, B., Tang, J., Kong, F., Mitcham, E., & Wang, S. (2015). Kinetics of food quality changes during thermal processing: a review. Food and Bioprocess Technology, 8(2), 343–358.CrossRefGoogle Scholar
  24. Linton, M., Mc Clements, J. M. J., & Patterson, M. F. (2003). Changes in the microbiological quality of shellfish, brought about by treatment with high hydrostatic pressure. International Journal of Food Science & Technology, 38(6), 713–727.CrossRefGoogle Scholar
  25. Mafart, P. (1994). Ingenieria industrial alimentaria: Procesos fisicis de conservacion. (1st edn.). Technique et Documentation-Lavoisier. Editorial Acribia, S.A.Google Scholar
  26. Maoka, T. (2011). Carotenoids in marine animals. Marine Drugs, 9(2), 278–293.CrossRefGoogle Scholar
  27. Martínez, M. A., Velazquez, G., Cando, D., Núñez-Flores, R., Borderías, A. J., & Moreno, H. M. (2017). Effects of high pressure processing on protein fractions of blue crab (Callinectes sapidus) meat. Innovative Food Science & Emerging Technologies, 41, 323–329.CrossRefGoogle Scholar
  28. Maulvault, A. L., Anacleto, P., Lourenço, H. M., Carvalho, M. L., Nunes, M. L., & Marques, A. (2012). Nutritional quality and safety of cooked edible crab (Cancer pagurus). Food Chemistry, 133(2), 277–283.CrossRefGoogle Scholar
  29. Mondal, I. H., & Dash, K. K. (2017). Textural, color kinetics, and heat and mass transfer modeling during deep fat frying of Chhena Jhili. Journal of Food Processing and Preservation, 41(2), e12828.CrossRefGoogle Scholar
  30. Ovissipour, M., Rasco, B., Tang, J., & Sablani, S. S. (2013). Kinetics of quality changes in whole blue mussel (Mytilus edulis) during pasteurization. Food Research International, 53(1), 141–148.CrossRefGoogle Scholar
  31. Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6(1), 36–60.CrossRefGoogle Scholar
  32. Requena, D. D., Hale, S. A., Green, D. P., McClure, W. F., & Farkas, B. E. (1999). Detection of discoloration in thermally processed blue crab meat. Journal of the Science of Food and Agriculture, 79(5), 786–791.CrossRefGoogle Scholar
  33. Uglow, R. F., Hosie, D. A., Johnson, I. T., & Macmullen, P. H. (1986). Live handling and transport of crustacean shellfish: an investigation of mortalities. Seafish technology SR280 (p. 24). London: MAFF R & D Commission.Google Scholar
  34. van Boekel, M. A. J. S., & Tijskens, L. M. M. (2001). Kinetic modelling. In L. M. M. Tijskens, M. L. A. T. M. Hertog, & B. M. Nicolai (Eds.), Food process modelling (pp. 35–59). Boca Raton: Woodhead PublishingLimited and CRC Press.Google Scholar
  35. Woll, A. K. (2006). Handbook: the edible crab-biology, grading and handling live crabs. Volda: Møreforsking Marine.Google Scholar
  36. Yu, K., Wu, Y., Hu, Z., Cui, S., & Yu, X. (2011). Modeling thermal degradation of litchi texture: comparison of WeLL model and conventional methods. Food Research International, 44(7), 1970–1976.CrossRefGoogle Scholar
  37. Zabbia, A., Buys, E. M., & De Kock, H. L. (2012). Undesirable sulphur and carbonyl flavor compounds in UHT Milk: a review. Critical Reviews in Food Science and Nutrition, 52(1), 21–30.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UCD Institute of Food and HealthUniversity College DublinDublin 4Ireland
  2. 2.Departamento de Producción Animal y Ciencia de los Alimentos. Tecnología de los Alimentos, Facultad de VeterinariaInstituto Agroalimentario de Aragón– IA2 - (Universidad de Zaragoza-CITA)ZaragozaSpain

Personalised recommendations