Formation of Double (W1/O/W2) Emulsions as Carriers of Hydrophilic and Lipophilic Active Compounds

  • M. Artiga-Artigas
  • A. Molet-Rodríguez
  • L. Salvia-Trujillo
  • O. Martín-BellosoEmail author
Original Paper


This work aimed at obtaining an optimized formation procedure of water-in-oil-in-water (W1/O/W2) double emulsions as potential templates to carry hydrophilic (e.g., chlorophyllin; CHL) and/or hydrophobic (e.g., lemongrass essential oil; LG-EO) active compounds. As a first step, the impact of the hydrophobic surfactant (i.e., Span 80 or PGPR), sodium alginate or NaCl concentration as well as the homogenization method (i.e., high-shear homogenization, ultrasonication, or microfluidization) on the particle size of the primary W1/O emulsions was evaluated. The inner phase (W1/O) formulated with PGPR (4% w/w) and sodium alginate (2% w/w) with NaCl (0.05 M) and treated by high-shear homogenization (11,000 rpm, 5 min) presented the smallest particle size (d[4;3] ≈ 0.51 μm). As a second step, the primary W1/O emulsion was subsequently dispersed in a secondary aqueous phase (W2) at varying hydrophilic surfactant (i.e., lecithin or Tween 20), sodium alginate or NaCl concentrations and magnetic stirring rate (rpm and time) to obtain double emulsions (W1/O/W2). The formation of stable W1/O/W2 emulsions with d[4;3] of 7 μm was achieved with the use of lecithin (2% w/w), sodium alginate (2% w/w) with NaCl (0.05 M) and treated by low-intensity UT homogenization (5600 rpm, 2 min) followed by 24 h of magnetic stirring. The incorporation of CHL and LG-EO in the inner aqueous phase and lipid phase respectively did not change the double emulsion characteristics. Overall, this study presents an effective two-step optimized procedure to form stable double emulsions as potential delivery systems for functional compounds.


Double emulsion Chlorophyllin Lemongrass essential oil PGPR Two-step procedure 



Authors María Artiga-Artigas and Anna Molet-Rodríguez thank the University of Lleida for their pre-doctoral fellowship. Author Laura Salvia-Trujillo thanks the “Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya” for the Beatriu de Pinós post-doctoral grant BdP2016 00336.


This study was funded by the Ministry of Economy, Industry and Competitiveness (MINECO/FEDER, UE) throughout project AGL2015-65975-R.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Altuntas, O. Y., Sumnu, G., & Sahin, S. (2017). Preparation and characterization of W/O/W type double emulsion containing PGPR–lecithin mixture as lipophilic surfactant. Journal of Dispersion Science and Technology, 38(4), 486–493.Google Scholar
  2. Aronson, M. P., & Petko, M. F. (1993). Highly concentrated water-in-oil emulsions: Influence of electrolyte on their properties and stability. Journal of Colloid and Interface Science, 159(1), 134–149.Google Scholar
  3. Artiga-Artigas, M., Acevedo-Fani, A., & Martín-Belloso, O. (2017). Effect of sodium alginate incorporation procedure on the physicochemical properties of nanoemulsions. Food Hydrocolloids, 70, 191–200.Google Scholar
  4. Artiga-Artigas, M., Guerra-Rosas, M. I., Morales-Castro, J., Salvia-Trujillo, L., & Martín-Belloso, O. (2018). Influence of essential oils and pectin on nanoemulsion formulation: A ternary phase experimental approach. Food Hydrocolloids, 81, 209–219.Google Scholar
  5. Bastida-Rodríguez, J. (2013). The food additive polyglycerol polyricinoleate (E-476): Structure, applications, and production methods. ISRN Chemical Engineering, 2013, 1–21.Google Scholar
  6. Benichou, A., Aserin, A., & Garti, N. (2004). Double emulsions stabilized with hybrids of natural polymers for entrapment and slow release of active matters. Advances in Colloid and Interface Science, 108–109, 29–41.PubMedGoogle Scholar
  7. Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76.PubMedGoogle Scholar
  8. Bonnet, M., Cansell, M., Placin, F., Anton, M., & Leal-Calderon, F. (2010). Impact of sodium caseinate concentration and location on magnesium release from multiple W/O/W emulsions. Langmuir, 26(12), 9250–9260.PubMedGoogle Scholar
  9. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft und Technologie, 30, 25–30.Google Scholar
  10. Cheel, J., Theoduloz, C., Rodríguez, J., & Schmeda-Hirschmann, G. (2005). Free radical scavengers and antioxidants from lemongrass (Cymbopogon citratus (DC.) Stapf.). Journal of Agricultural and Food Chemistry, 53(7), 2511–2517.PubMedGoogle Scholar
  11. Cheung, T., Nigam, P., & Owusu-Apenten, R. (2016). Antioxidant activity of curcumin and neem (Azadirachta indica) powders: Combination studies with ALA using MCF-7 breast cancer cells. Journal of Applied Life Sciences International, 4(3), 1–12.Google Scholar
  12. Dickinson, E. (2011a). Double emulsions stabilized by food biopolymers. Food Biophysics, 6(1), 1–11.Google Scholar
  13. Dickinson, E. (2011b). Mixed biopolymers at interfaces: Competitive adsorption and multilayer structures. Food Hydrocolloids, 25(8), 1966–1983.Google Scholar
  14. Ekthamasut, K., & Akesowan, A. (2010). Effect of vegetable oils on physical characteristics of edible Konjac films. Water, 4.Google Scholar
  15. Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science & Technology, 23(1), 13–27.Google Scholar
  16. Garti, N. (1997). Progress in stabilization and transport phenomena of double emulsions in food applications. LWT - Food Science and Technology, 30(3), 222–235.Google Scholar
  17. Garti, N., & Bisperink, C. (1998). Double emulsions: Progress and applications. Current Opinion in Colloid & Interface Science, 3(6), 657–667.Google Scholar
  18. Giroux, H. J., Constantineau, S., Fustier, P., Champagne, C. P., St-Gelais, D., Lacroix, M., & Britten, M. (2013). Cheese fortification using water-in-oil-in-water double emulsions as carrier for water soluble nutrients. International Dairy Journal, 29(2), 107–114.Google Scholar
  19. Guerra-Rosas, M. I., Morales-Castro, J., Ochoa-Martínez, L. A., Salvia-Trujillo, L., & Martín-Belloso, O. (2016). Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocolloids, 52, 438–446.Google Scholar
  20. Guerra-Rosas, M. I., Morales-Castro, J., Cubero-Márquez, M. A., Salvia-Trujillo, L., & Martín-Belloso, O. (2017). Antimicrobial activity of nanoemulsions containing essential oils and high methoxyl pectin during long-term storage. Food Control, 77, 131–138. Scholar
  21. Jafari, S. M., He, Y., & Bhandari, B. (2007). Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 82(4), 478–488.Google Scholar
  22. Jukić, M., & Miloš, M. (2005). Catalytic oxidation and antioxidant properties of thyme essential oils (Thymus vulgarae L.). Croatica Chemica Acta, 78(1), 105–110.Google Scholar
  23. Kanouni, M., Rosano, H. L., & Naouli, N. (2002). Preparation of a stable double emulsion (W1/O/W2): Role of the interfacial films on the stability of the system. Advances in Colloid and Interface Science, 99(3), 229–254.PubMedGoogle Scholar
  24. Kolb, G., Viardot, K., Wagner, G., & Ulrich, J. (2001). Evaluation of a new high-pressure dispersion unit (HPN) for emulsification. Chemical Engineering and Technology, 24(3), 293–296.Google Scholar
  25. Lamba, H., Sathish, K., & Sabikhi, L. (2015). Double emulsions: Emerging delivery system for plant bioactives. Food and Bioprocess Technology, 8(4), 709–728.Google Scholar
  26. Lopez-Carballo, G., Hernandez-Munoz, P., Gavara, R., & Ocio, M. J. (2008). Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products. International Journal of Food Microbiology, 126(1–2), 65–70.PubMedGoogle Scholar
  27. Márquez, A. L., Palazolo, G. G., & Wagner, J. R. (2007). Water in oil (w/o) and double (w/o/w) emulsions prepared with spans: Microstructure, stability, and rheology. Colloid and Polymer Science, 285(10), 1119–1128.Google Scholar
  28. McClements, D. J. (2002). Theoretical prediction of emulsion color. Advances in Colloid and Interface Science, 97(1–3), 63–89.PubMedGoogle Scholar
  29. McClements, D. J. (2011). Edible nanoemulsions: Fabrication, properties, and functional performance. Soft Matter, 7(6), 2297–2316.Google Scholar
  30. Meleson, K., Graves, S., & Mason, T. G. (2004). Formation of concentrated nanoemulsions by extreme shear. Soft Materials, 2(2–3), 109–123.Google Scholar
  31. Mezzenga, R., Folmer, B. M., & Hughes, E. (2004). Design of double emulsions by osmotic pressure tailoring. Langmuir, 20(9), 3574–3582. Scholar
  32. Muschiolik, G. (2007). Multiple emulsions for food use. Current Opinion in Colloid and Interface Science, 12(4–5), 213–220.Google Scholar
  33. Muschiolik, G., & Dickinson, E. (2017). Double emulsions relevant to food systems: Preparation, stability, and applications. Comprehensive Reviews in Food Science and Food Safety, 16(3), 532–555.Google Scholar
  34. Pereira, R., Carvalho, A., Vaz, D. C., Gil, M. H., Mendes, A., & Bártolo, P. (2013). Development of novel alginate based hydrogel films for wound healing applications. International Journal of Biological Macromolecules, 52, 221–230.PubMedGoogle Scholar
  35. Rosano, H. L., Gandolfo, F. G., & Hidrot, J. P. (1998). Stability of W1/O/W2 multiple emulsions. Influence of ripening and interfacial interactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 138, 109–121.Google Scholar
  36. Salvia-Trujillo, L., Rojas-Graü, A., Soliva-Fortuny, R., & Martín-Belloso, O. (2013a). Physicochemical characterization of lemongrass essential oil-alginate nanoemulsions: Effect of ultrasound processing parameters. Food and Bioprocess Technology, 6(9), 2439–2446.Google Scholar
  37. Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2013b). Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocolloids, 30(1), 401–407.Google Scholar
  38. Salvia-Trujillo, L., Rojas-Graü, A., Soliva-Fortuny, R., & Martín-Belloso, O. (2015). Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocolloids, 43, 547–556.Google Scholar
  39. Scherze, I., Knoth, A., & Muschiolik, G. (2006). Effect of emulsification method on the properties of lecithin- and PGPR-stabilized water-in-oil-emulsions. Journal of Dispersion Science and Technology, 27(4), 427–434.Google Scholar
  40. Schultz, S., Wagner, G., Urban, K., & Ulrich, J. (2004). High-pressure homogenization as a process for emulsion formation. Chemical Engineering and Technology, 27(4), 361–368.Google Scholar
  41. Su, J., Flanagan, J., Hemar, Y., & Singh, H. (2006). Synergistic effects of polyglycerol ester of polyricinoleic acid and sodium caseinate on the stabilisation of water-oil-water emulsions. Food Hydrocolloids, 20(2–3 SPEC. ISS), 261–268.Google Scholar
  42. Surh, J., Vladisavljević, G. T., Mun, S., & McClements, D. J. (2007). Preparation and characterization of water/oil and water/oil/water emulsions containing biopolymer-gelled water droplets. Journal of Agricultural and Food Chemistry, 55(1), 175–184.PubMedGoogle Scholar
  43. Tabibiazar, M., & Hamishehkar, H. (2015). Formulation of a food grade water-in-oil nanoemulsion: Factors affecting on stability. Pharmaceutical Sciences, 21(4), 220–224.Google Scholar
  44. Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6–7), 669–675.Google Scholar
  45. Tumolo, T., & Lanfer-Marquez, U. M. (2012). Copper chlorophyllin: A food colorant with bioactive properties? Food Research International, 46(2), 451–459.Google Scholar
  46. Velderrain-Rodríguez, G. R., Ovando-Martínez, M., Villegas-Ochoa, M., Ayala-Zavala, J. F., Wall-Medrano, A., Álvarez-Parrilla, E., Madera-Santana, T. J., Astiazarán-García, H., Tortoledo-Ortiz, O., & González-Aguilar, G. A. (2015). Antioxidant capacity and bioaccessibility of synergic mango (cv. Ataulfo) peel phenolic compounds in edible coatings applied to fresh-cut papaya. Food and Nutrition Sciences, 6(6), 365–373.Google Scholar
  47. Wang, Y., Zhang, T., & Hu, G. (2006). Structural evolution of polymer-stabilized double emulsions. Langmuir, 22(1), 67–73.Google Scholar
  48. Weiss, J., & Muschiolik, G. (2007). Factors affecting the droplet size of water-in-oil emulsions (W/O) and the oil globule size in water-in-oil-in-water emulsions (W/O/W). Journal of Dispersion Science and Technology, 28(5), 703–716.Google Scholar
  49. Wooster, T. J., Golding, M., & Sanguansri, P. (2008). Ripening Stability. Langmuir, 24(10), 12758–12765.PubMedGoogle Scholar
  50. Xu, J.-H., Ge, X.-H., Chen, R., & Luo, G.-S. (2014). Microfluidic preparation and structure evolution of double emulsions with two-phase cores. RSC Advances, 4(4), 1900–1906.Google Scholar
  51. Yan, J., & Pal, R. (2001). Osmotic swelling behavior of globules of W/O/W emulsion liquid membranes. Journal of Membrane Science, 190(1), 79–91.Google Scholar
  52. Yang, J. S., Jiang, B., He, W., & Xia, Y. M. (2012). Hydrophobically modified alginate for emulsion of oil in water. Carbohydrate Polymers, 87(2), 1503–1506.Google Scholar
  53. Zirak, M. B., & Pezeshki, A. (2015). International Journal of Current Microbiology and Applied Sciences, 4(9), 924–932.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Artiga-Artigas
    • 1
  • A. Molet-Rodríguez
    • 1
  • L. Salvia-Trujillo
    • 1
  • O. Martín-Belloso
    • 1
    Email author
  1. 1.Department of Food TechnologyUniversidad de LleidaLleidaSpain

Personalised recommendations