Advertisement

Effect of Ultrasound Pre-Treatment on the Physical, Microbiological, and Antioxidant Properties of Calçots

  • Lorena Zudaire
  • Tomás Lafarga
  • Inmaculada Viñas
  • Maribel Abadias
  • Nigel Brunton
  • Ingrid Aguiló-Aguayo
Original Paper
  • 35 Downloads

Abstract

The effect of ultrasound (US) treatment (40 kHz, 250 W) for 0, 10, 25 and 45 min on the physical and microbiological quality, total antioxidant capacity (TAC) and total phenolic content (TPC) of calçots (Allium cepa L.) was evaluated. Moreover, the effect of roasting (270 °C, 8 min) and in vitro simulated digestion on the antioxidant properties was studied. Overall, US treatment had no effect of the physical quality and antioxidant properties of calçots regardless the treatment time, while thermal processing produced an increase on the TAC and maintenance in TPC. Furthermore, the digestion process caused a remarkable decrease on the TAC and TPC, but that decrease was higher in roasted than in fresh samples. The microbial load of all US-treated fresh samples was below 6 log (cfu g−1) and a decrease of 1-log reduction was observed after treating for 45 min. Those results indicated that US pre-treatment had no negative effects on the quality of calçot while produced a decrease on the microbial load at high processing times.

Keywords

Allium cepa L. Thermal processing Gastrointestinal digestion Antioxidant capacity Novel technologies 

Abbreviations

ΔE*

Colour difference

BI

Browning Index

DPPH

2,2-diphenyl-1-picrylhydrazyl

FRAP

Ferric reducing antioxidant power

h°

Hue angle

TAC

Total antioxidant capacity

TPC

Total phenolic content

US

Ultrasound

Notes

Funding Information

This work was supported by ACCIÓ (Generalitat of Catalonia, RD14-1-004), Sociedad Agrícola i Secció de Crèdit de Valls S.C.C.L., Cooperativa of Cambrils, and PGI ‘Calçot de Valls’. This work was also supported by the ‘Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement’ (FI-2017-B2-00164, L. Zudaire) and CERCA Programme of Generalitat de Catalunya. T. Lafarga is in receipt of a ‘Juan de la Cierva’ contract awarded by the Spanish Ministry of Economy, Industry, and Competitiveness (FJCI-2016-29541). I. Aguiló-Aguayo thanks the National Programme for the promotion of talent and its employability of the ‘Ministerio de Economía, Industria y Competitividad’ of the Spanish Government and to the European Social Fund for the Postdoctoral Senior Grant ‘Ramon y Cajal’ (RYC-2016-19949).

References

  1. Aguiló-Aguayo, I., Simó, J., Ivars, N., Villaró, S., Zudaire, L., Echeverria, G., et al. (2016). Suitability of the ‘calçots’ (Allium cepa L.) for minimal processing. In 2nd Euro-Mediterranean Symposium on Fruit and Vegetable Processing, Avignon, France, April 4 to 6, 2016.Google Scholar
  2. Alegre, I., Viñas, I., Usall, J., Anguera, M., & Abadias, M. (2011). Microbiological and physicochemical quality of fresh-cut apple enriched with the probiotic strain Lactobacillus rhamnosus GG. Food Microbiology, 28(1), 59–66.  https://doi.org/10.1016/j.fm.2010.08.006.CrossRefGoogle Scholar
  3. Alexandre, E. M. C., Brandão, T. R. S., & Silva, C. L. M. (2012). Efficacy of non-thermal technologies and sanitizer solutions on microbial load reduction and quality retention of strawberries. Journal of Food Engineering, 108(3), 417–426.  https://doi.org/10.1016/j.jfoodeng.2011.09.002.CrossRefGoogle Scholar
  4. Altisent, R., Plaza, L., Alegre, I., Viñas, I., & Abadias, M. (2014). Comparative study of improved vs. traditional apple cultivars and their aptitude to be minimally processed as ‘ready to eat’ apple wedges. LWT - Food Science and Technology, 58(2), 541–549.  https://doi.org/10.1016/j.lwt.2014.03.019.CrossRefGoogle Scholar
  5. Anese, M., Mirolo, G., Beraldo, P., & Lippe, G. (2013). Effect of ultrasound treatments of tomato pulp on microstructure and lycopene in vitro bioaccessibility. Food Chemistry, 136(2), 458–463.  https://doi.org/10.1016/j.foodchem.2012.08.013.CrossRefGoogle Scholar
  6. Anese, M., Bot, F., Panozzo, A., Mirolo, G., & Lippe, G. (2015). Effect of ultrasound treatment, oil addition and storage time on lycopene stability and in vitro bioaccessibility of tomato pulp. Food Chemistry, 172, 685–691.  https://doi.org/10.1016/j.foodchem.2014.09.140.CrossRefGoogle Scholar
  7. Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D., & Youssef, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: a review. Food Research International. Elsevier B.V.  https://doi.org/10.1016/j.foodres.2012.05.004.CrossRefGoogle Scholar
  8. Bilek, S. E., & Turantaş, F. (2013). Decontamination efficiency of high power ultrasound in the fruit and vegetable industry, a review. International Journal of Food Microbiology.  https://doi.org/10.1016/j.ijfoodmicro.2013.06.028.CrossRefGoogle Scholar
  9. Birmpa, A., Sfika, V., & Vantarakis, A. (2013). Ultraviolet light and ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. International Journal of Food Microbiology, 167(1), 96–102.  https://doi.org/10.1016/j.ijfoodmicro.2013.06.005.CrossRefGoogle Scholar
  10. Bouayed, J., Deußer, H., Hoffmann, L., & Bohn, T. (2012). Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chemistry, 131(4), 1466–1472.  https://doi.org/10.1016/j.foodchem.2011.10.030.CrossRefGoogle Scholar
  11. Cao, S., Hu, Z., Pang, B., Wang, H., Xie, H., & Wu, F. (2010). Effect of ultrasound treatment on fruit decay and quality maintenance in strawberry after harvest. Food Control, 21(4), 529–532.  https://doi.org/10.1016/j.foodcont.2009.08.002.CrossRefGoogle Scholar
  12. Carbonell-Capella, J. M., Buniowska, M., Barba, F. J., Esteve, M. J., & Frígola, A. (2014). Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: a review. Comprehensive Reviews in Food Science and Food Safety, 13(2), 155–171.  https://doi.org/10.1111/1541-4337.12049.CrossRefGoogle Scholar
  13. Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835.  https://doi.org/10.1016/j.ultsonch.2010.11.023.CrossRefGoogle Scholar
  14. Colás-Medà, P., Abadias, M., Altisent, R., Alegre, I., Plaza, L., Gilabert, V., et al. (2016). Development of a fresh-cut product based on pears and the subsequent evaluation of Its shelf life under commercial conditions and after a cold chain break. Journal of Food and Nutrition Research, 4(9), 582–591.  https://doi.org/10.12691/jfnr-4-9-4.CrossRefGoogle Scholar
  15. Colucci, D., Fissore, D., Rossello, C., & Carcel, J. A. (2018). On the effect of ultrasound-assisted atmospheric freeze-drying on the antioxidant properties of eggplant. Food Research International.  https://doi.org/10.1016/j.foodres.2018.01.022.CrossRefGoogle Scholar
  16. D.A.R.P. (2009). ORDRE AAR/414/2009, de 21 de setembre, per la qual s’aprova el Reglament de la Indicació Geogràfica Protegida Calçot de Valls. http://portaljuridic.gencat.cat/ca/pjur_ocults/pjur_resultats_fitxa/?documentId = 503886&language=ca_ES&action=fitxa
  17. de Lima, A. C. S., da Rocha Viana, J. D., de Sousa Sabino, L. B., da Silva, L. M. R., da Silva, N. K. V., & de Sousa, P. H. M. (2017). Processing of three different cooking methods of cassava: effects on in vitro bioaccessibility of phenolic compounds and antioxidant activity. LWT - Food Science and Technology, 76, 253–258.  https://doi.org/10.1016/j.lwt.2016.07.023.CrossRefGoogle Scholar
  18. de São José, J., de Andrade, N. J., Ramos, A. M., Vanetti, M., Stringheta, P., & Chaves, J. (2014). Decontamination by ultrasound application in fresh fruits and vegetables. Food Control, 45, 36–50.  https://doi.org/10.1016/j.foodcont.2014.04.015.CrossRefGoogle Scholar
  19. Ding, T., Ge, Z., Shi, J., Xu, Y. T., Jones, C. L., & Liu, D. H. (2015). Impact of slightly acidic electrolyzed water (SAEW) and ultrasound on microbial loads and quality of fresh fruits. LWT - Food Science and Technology, 60(2), 1195–1199.  https://doi.org/10.1016/j.lwt.2014.09.012.CrossRefGoogle Scholar
  20. do Rosário, D. K. A., da Silva Mutz, Y., Peixoto, J. M. C., Oliveira, S. B. S., de Carvalho, R. V., Carneiro, J. C. S., et al. (2017). Ultrasound improves chemical reduction of natural contaminant microbiota and Salmonella enterica subsp. enterica on strawberries. International Journal of Food Microbiology, 241, 23–29.  https://doi.org/10.1016/j.ijfoodmicro.2016.10.009.CrossRefGoogle Scholar
  21. EC No 905/2002. Commission Regulation (EC) No 905/2002 of 30 May 2002 supplementing the Annex to Regulation (EC) No 2400/96 on the entry of certain names in the ‘Register of protected designations of origin and protected geographical indications’ [2002] OJ L 142/27.Google Scholar
  22. Fava, J., Hodara, K., Nieto, A., Guerrero, S., Alzamora, S. M., & Castro, M. A. (2011). Structure (micro, ultra, nano), color and mechanical properties of Vitis labrusca L. (grape berry) fruits treated by hydrogen peroxide, UV-C irradiation and ultrasound. Food Research International, 44(9), 2938–2948.  https://doi.org/10.1016/j.foodres.2011.06.053.CrossRefGoogle Scholar
  23. Gani, A., Baba, W. N., Ahmad, M., Shah, U., Khan, A. A., Wani, I. A., et al. (2016). Effect of ultrasound treatment on physico-chemical, nutraceutical and microbial quality of strawberry. LWT - Food Science and Technology, 66, 496–502.  https://doi.org/10.1016/j.lwt.2015.10.067.CrossRefGoogle Scholar
  24. Guillén, S., Mir-Bel, J., Oria, R., & Salvador, M. L. (2017). Influence of cooking conditions on organoleptic and health-related properties of artichokes, green beans, broccoli and carrots. Food Chemistry, 217, 209–216.  https://doi.org/10.1016/j.foodchem.2016.08.067.CrossRefGoogle Scholar
  25. Jiménez-Monreal, A. M., García-Diz, L., Martínez-Tomé, M., Mariscal, M., & Murcia, M. A. (2009). Influence of cooking methods on antioxidant activity of vegetables. Journal of Food Science, 74(3), 97–103.  https://doi.org/10.1111/j.1750-3841.2009.01091.x.CrossRefGoogle Scholar
  26. Juániz, I., Ludwig, I. A., Huarte, E., Pereira-Caro, G., Moreno-Rojas, J. M., Cid, C., & De Peña, M. P. (2016). Influence of heat treatment on antioxidant capacity and (poly)phenolic compounds of selected vegetables. Food Chemistry, 197, 466–473.  https://doi.org/10.1016/j.foodchem.2015.10.139.CrossRefGoogle Scholar
  27. Kapusta-Duch, J., Kusznierewicz, B., Leszczyńska, T., & Borczak, B. (2016). Effect of cooking on the contents of glucosinolates and their degradation products in selected Brassica vegetables. Journal of Functional Foods, 23, 412–422.  https://doi.org/10.1016/j.jff.2016.03.006.CrossRefGoogle Scholar
  28. Kentish, S., & Ashokkumar, M. (2011). The physical and chemical effects of ultrasound. In H. Feng, G. V. Barbosa-Cánovas, & J. Weiss (Eds.), Ultrasound technologies for food and bioprocessing (pp. 1–12). New York: Springer.Google Scholar
  29. Lagnika, C., Zhang, M., & Mothibe, K. J. (2013). Effects of ultrasound and high pressure argon on physico-chemical properties of white mushrooms (Agaricus bisporus) during postharvest storage. Postharvest Biology and Technology, 82, 87–94.  https://doi.org/10.1016/j.postharvbio.2013.03.006.CrossRefGoogle Scholar
  30. Liu, C., Ma, T., Hu, W., Tian, M., & Sun, L. (2016). Effects of aqueous ozone treatments on microbial load reduction and shelf life extension of fresh-cut apple. International Journal of Food Science and Technology, 51(5), 1099–1109.  https://doi.org/10.1111/ijfs.13078.CrossRefGoogle Scholar
  31. Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., et al. (2014). A standardised static in vitro digestion method suitable for food - an international consensus. Food & function, 5(6), 1113–1124.  https://doi.org/10.1039/c3fo60702j.CrossRefGoogle Scholar
  32. Morales, F. J., & Babbel, M.-B. (2002). Antiradical efficiency of Maillard reaction mixtures in a hydrophilic media. Journal of Agricultural and Food Chemistry, 50(10), 2788–2792.  https://doi.org/10.1021/jf011449u.CrossRefGoogle Scholar
  33. Muzaffar, S., Ahmad, M., Wani, S. M., Gani, A., Baba, W. N., Shah, U., et al. (2016). Ultrasound treatment: effect on physicochemical, microbial and antioxidant properties of cherry (Prunus avium). Journal of Food Science and Technology, 53(6), 2752–2759.  https://doi.org/10.1007/s13197-016-2247-3.CrossRefGoogle Scholar
  34. Palmero, P., Lemmens, L., Hendrickx, M., & Van Loey, A. (2014). Role of carotenoid type on the effect of thermal processing on bioaccessibility. Food Chemistry, 157, 275–282.  https://doi.org/10.1016/j.foodchem.2014.02.055.CrossRefGoogle Scholar
  35. Pingret, D., Fabiano-Tixier, A. S., & Chemat, F. (2013). Degradation during application of ultrasound in food processing: a review. Food Control, 31(2), 593–606.  https://doi.org/10.1016/j.foodcont.2012.11.039.CrossRefGoogle Scholar
  36. Piyasena, P., Mohareb, E., & McKellar, R. C. (2003). Inactivation of microbes using ultrasound: a review. International Journal of Food Microbiology, 87(3), 207–216.  https://doi.org/10.1016/S0168-1605(03)00075-8.CrossRefGoogle Scholar
  37. Plaza, L., Altisent, R., Alegre, I., Viñas, I., & Abadias, M. (2016). Changes in the quality and antioxidant properties of fresh-cut melon treated with the biopreservative culture Pseudomonas graminis CPA-7 during refrigerated storage. Postharvest Biology and Technology, 111, 25–30.  https://doi.org/10.1016/j.postharvbio.2015.07.023.CrossRefGoogle Scholar
  38. Ramírez-Moreno, E., Zafra-Rojas, Q. Y., Arias-Rico, J., Ariza-Ortega, J. A., Alanís-García, E., & Cruz-Cansino, N. (2018). Effect of ultrasound on microbiological load and antioxidant properties of blackberry juice. Journal of Food Processing and Preservation, 42(2), 1–6.  https://doi.org/10.1111/jfpp.13489.CrossRefGoogle Scholar
  39. Rawson, A., Tiwari, B. K., Patras, A., Brunton, N., Brennan, C., Cullen, P. J., & O’Donnell, C. (2011). Effect of thermosonication on bioactive compounds in watermelon juice. Food Research International, 44(5), 1168–1173.  https://doi.org/10.1016/j.foodres.2010.07.005.CrossRefGoogle Scholar
  40. Rawson, A., Hossain, M. B., Patras, A., Tuohy, M., & Brunton, N. (2013). Effect of boiling and roasting on the polyacetylene and polyphenol content of fennel (Foeniculum vulgare) bulb. Food Research International, 50(2), 513–518.  https://doi.org/10.1016/j.foodres.2011.01.009.CrossRefGoogle Scholar
  41. Ribas-Agustí, A., Martín-Belloso, O., Soliva-Fortuny, R., & Elez-Martínez, P. (2017). Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Critical Reviews in Food Science and Nutrition, 1–18.  https://doi.org/10.1080/10408398.2017.1331200.
  42. Santos, J. G., Fernandes, F. A. N., de Siqueira Oliveira, L., & de Miranda, M. R. A. (2015). Influence of ultrasound on fresh-cut mango quality through evaluation of enzymatic and oxidative metabolism. Food and Bioprocess Technology, 8(7), 1532–1542.  https://doi.org/10.1007/s11947-015-1518-8.CrossRefGoogle Scholar
  43. Sharma, K., Ko, E. Y., Assefa, A. D., Ha, S., Nile, S. H., Lee, E. T., & Park, S. W. (2015). Temperature-dependent studies on the total phenolics, flavonoids, antioxidant activities, and sugar content in six onion varieties. Journal of Food and Drug Analysis, 23(2), 243–252.  https://doi.org/10.1016/j.jfda.2014.10.005.CrossRefGoogle Scholar
  44. Simó, J., Valero, J., Plans, M., Romero del Castillo, R., & Casañas, F. (2013). Breeding onions (Allium cepa L.) for consumption as ‘calçots’ (second-year resprouts). Scientia Horticulturae, 152, 74–79.  https://doi.org/10.1016/j.scienta.2013.01.011.CrossRefGoogle Scholar
  45. Singleton, V., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzimology, 299, 152–178.CrossRefGoogle Scholar
  46. Soares, A., Carrascosa, C., & Raposo, A. (2017). Influence of different cooking methods on the concentration of glucosinolates and vitamin C in broccoli. Food and Bioprocess Technology, 10(8), 1387–1411.  https://doi.org/10.1007/s11947-017-1930-3.CrossRefGoogle Scholar
  47. Toivonen, P. M. A., & Brummell, D. A. (2008). Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology and Technology, 48(1), 1–14.  https://doi.org/10.1016/j.postharvbio.2007.09.004.CrossRefGoogle Scholar
  48. Wang, W., Ma, X., Zou, M., Jiang, P., Hu, W., Li, J., et al. (2015). Effects of ultrasound on spoilage microorganisms, quality, and antioxidant capacity of postharvest cherry tomatoes. Journal of Food Science, 80(10), C2117–C2126.  https://doi.org/10.1111/1750-3841.12955.CrossRefGoogle Scholar
  49. Welti-Chanes, J., Morales-de la Peña, M., Jacobo-Velázquez, D. A., & Martín-Belloso, O. (2017). Opportunities and challenges of ultrasound for food processing: an industry point of view. Ultrasound: Advances for food processing and preservation. Academic Press.  https://doi.org/10.1016/B978-0-12-804581-7.00019-1.CrossRefGoogle Scholar
  50. Wibowo, S., Vervoort, L., Tomic, J., Santiago, J. S., Lemmens, L., Panozzo, A., et al. (2015). Colour and carotenoid changes of pasteurised orange juice during storage. Food Chemistry, 171, 330–340.  https://doi.org/10.1016/j.foodchem.2014.09.007.CrossRefGoogle Scholar
  51. Yeoh, W. K., & Ali, A. (2017). Ultrasound treatment on phenolic metabolism and antioxidant capacity of fresh-cut pineapple during cold storage. Food Chemistry, 216, 247–253.  https://doi.org/10.1016/j.foodchem.2016.07.074.CrossRefGoogle Scholar
  52. Zudaire, L., Viñas, I., Abadias, M., Simó, J., Echeverria, G., Plaza, L., & Aguiló-Aguayo, I. (2017). Quality and bioaccessibility of total phenols and antioxidant activity of calçots (Allium cepa L.) stored under controlled atmosphere conditions. Postharvest Biology and Technology, 129, 118–128.  https://doi.org/10.1016/j.postharvbio.2017.03.013.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lorena Zudaire
    • 1
  • Tomás Lafarga
    • 1
  • Inmaculada Viñas
    • 2
  • Maribel Abadias
    • 1
  • Nigel Brunton
    • 3
  • Ingrid Aguiló-Aguayo
    • 1
  1. 1.IRTA, XaRTA-Postharvest, Edifici FruitcentreParc Científic i Tecnològic Agroalimentari de LleidaLleidaSpain
  2. 2.Food Technology DepartmentUniversity of Lleida, XaRTA-Postharvest, Agrotecnio CenterLleidaSpain
  3. 3.School of Agriculture and Food ScienceUniversity College DublinDublin 4Ireland

Personalised recommendations