Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 2, pp 347–357 | Cite as

Rapid Identification of Genetically Modified Maize Using Laser-Induced Breakdown Spectroscopy

  • Xiaodan Liu
  • Xuping Feng
  • Fei Liu
  • Jiyu Peng
  • Yong HeEmail author
Original Paper

Abstract

The safety of genetically modified (GM) food has attracted worldwide attention with a high-frequency appearance in people’s daily life. It is increasingly urgent to find a fast and efficient method to detect GM products to provide reference for safety evaluation. In the current study, we used laser-induced breakdown spectroscopy coupled with chemometrics methods to identify transgenic maize from their non-transgenic parent. One-hundred and twenty GM maize and 120 non-GM maize samples were firstly examined by laser-induced breakdown spectroscopy (LIBS) system. After obtaining the LIBS spectra, principal component analysis (PCA) was introduced to explore the separability of two kinds of samples, and 32 and 30 characteristic emission lines were selected using PCA loadings and weighted regression coefficients (BW), respectively. Classification models based on full spectra and characteristic emission lines were further built by applying partial least squares discrimination analysis (PLS-DA), soft independent modeling of class analogy (SIMCA), and extreme learning machine (ELM). The overall results demonstrated that all models achieved an excellent identification rate, especially the PCA loading-ELM model showed the best performance in the identification of GM maize, with 100% identification accuracy in both calibration and prediction sets. It can be concluded that LIBS combined with chemometrics methods provide a promising way for identification of transgenic maize.

Keywords

Laser-induced breakdown spectroscopy Chemometrics methods Identification GM maize 

Notes

Funding Information

This study was funded by Major Science and Technology Projects in Zhejiang (2015C02007), and National Key R&D Program of China (2016YFD0700304).

References

  1. Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459.CrossRefGoogle Scholar
  2. Anzanello, M., Fogliatto, F., Marcelo, M. C. A., Pozebon, D., & Ferrão, M. F. (2016). Wavelength selection framework for classifying food and pharmaceutical samples into multiple classes. Journal of Chemometrics, 30(6), 346–353.CrossRefGoogle Scholar
  3. Anzano, J., Bonilla, B., Montull-Ibor, B., & Casas-González, J. (2011). Plastic identification and comparison by multivariate techniques with laser-induced breakdown spectroscopy. Journal of Applied Polymer Science, 121(5), 2710–2716.CrossRefGoogle Scholar
  4. Awasthi, S., Kumar, R., Rai, G. K., & Rai, A. K. (2016). Study of archaeological coins of different dynasties using libs coupled with multivariate analysis. Optics and Lasers in Engineering, 79, 29–38.CrossRefGoogle Scholar
  5. Ballabio, D., & Consonni, V. (2013). Classification tools in chemistry. Part 1: linear models. PLS-DA. Analytical Methods, 5(16), 3790–3798.CrossRefGoogle Scholar
  6. Barros, E., Lezar, S., Anttonen, M. J., van Dijk, J. P., Rohlig, R. M., Kok, E. J., & Engelet, K. (2010). Comparison of two GM maize varieties with a near-isogenic non-GM variety using transcriptomics, proteomics and metabolomics. Plant Biotechnology Journal, 8(4), 436–451.CrossRefGoogle Scholar
  7. Bawa, A. S., & Anilakumar, K. R. (2013). Genetically modified foods: safety, risks and public concerns-a review. Journal of Food Science and Technology, 50(6), 1035–1046.CrossRefGoogle Scholar
  8. Benevenuto, R. F., Agapito-Tenfen, S. Z., Vilperte, V., Wikmark, O. G., van Rensburg, P. J., & Nodari, R. O. (2017). Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses. PLoS One, 12(2), e0173069.CrossRefGoogle Scholar
  9. Bhoge, R. K., Chhabra, R., Randhawa, G., Sathiyabama, M., & Singh, M. (2015). Event-specific analytical methods for six genetically modified maize events using visual and real-time loop-mediated isothermal amplification. Food Control, 55, 18–30.CrossRefGoogle Scholar
  10. Bilge, G., Boyacı, İ. H., Eseller, K. E., Tamer, U., & Cakır, S. (2015). Analysis of bakery products by laser-induced breakdown spectroscopy. Food Chemistry, 181, 186–190.CrossRefGoogle Scholar
  11. Botelho, B. G., Reis, N., Oliveira, L. S., & Sena, M. M. (2015). Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA. Food Chemistry, 181, 31–37.CrossRefGoogle Scholar
  12. Bro, R., & Smilde, A. K. (2014). Principal component analysis. Analytical Methods, 6(9), 2812–2831.CrossRefGoogle Scholar
  13. Canel, T., Demir, P., Kacar, E., Genc Oztoprak, B., Akman, E., Gunes, M., & Demiret, A. (2013). Optimization of parameters for depth resolution of galvanized steel by LIBS technique. Optics and Laser Technology, 54, 257–264.CrossRefGoogle Scholar
  14. Dai, Q., Cheng, J., Sun, D., & Zeng, X. (2015). Advances in feature selection methods for hyperspectral image processing in food industry applications: a review. Critical Reviews in Food Science and Nutrition, 55(10), 1368–1382.CrossRefGoogle Scholar
  15. De Lucia, F. C., & Gottfried, J. L. (2011). Influence of variable selection on partial least squares discriminant analysis models for explosive residue classification. Spectrochimica Acta Part B: Atomic Spectroscopy, 66(2), 122–128.CrossRefGoogle Scholar
  16. De Maesschalck, R., Candolfi, A., Massart, D. L., & Heuerding, S. (1999). Decision criteria for soft independent modelling of class analogy applied to near infrared data. Chemometrics and Intelligent Laboratory Systems, 47(1), 65–77.CrossRefGoogle Scholar
  17. Fang, H., Zhang, Z., Wang, H., Yang, X., He, Y., & Bao, Y. (2017). Identification of transgenic soybean varieties using mid-infrared spectroscopy. Spectroscopy and Spectral Analysis, 37(3), 760–765 (in Chinese with English abstract ).PubMedGoogle Scholar
  18. Feng, X., Zhao, Y., Zhang, C., Peng, C., & He, Y. (2017). Discrimination of transgenic maize kernel using NIR hyperspectral imaging and multivariate data analysis. Sensors, 17(8), 1894–1908.CrossRefGoogle Scholar
  19. Gal, L., Oravec, M., Gemeiner, P., & Ceppan, M. (2015). Principal component analysis for the forensic discrimination of black inkjet inks based on the Vis-NIR fibre optics reflection spectra. Forensic Science International, 257, 285–292.CrossRefGoogle Scholar
  20. Ghasemi, K., Khanmohammadi, M., & Saligheh Rad, H. (2016). Accurate grading of brain gliomas by soft independent modeling of class analogy based on non-negative matrix factorization of proton magnetic resonance spectra. Magnetic Resonance in Chemistry, 54(2), 119–125.CrossRefGoogle Scholar
  21. Gong, G., & Yang, J. (2015). Quantitative analysis of Cr in milk powder by laser induced breakdown spectroscopy ( LIBS). Agricultural Biotechnology, 4(6), 66–69.Google Scholar
  22. Heras, D. B., Argüello, F., & Quesada-Barriuso, P. (2014). Exploring ELM-based spatial–spectral classification of hyperspectral images. International Journal of Remote Sensing, 35(2), 401–423.CrossRefGoogle Scholar
  23. Jain, S., Yadav, M. K., & Kumar, A. (2018). Techniques for production and quality assessment of genetically modified foods. Handbook of food bioengineering.Google Scholar
  24. Kim, G., Kwak, J., Choi, J., & Park, K. (2012). Detection of nutrient elements and contamination by pesticides in spinach and rice samples using laser-induced breakdown spectroscopy (LIBS). Journal of Agricultural and Food Chemistry, 60(3), 718–724.CrossRefGoogle Scholar
  25. Kong, W., Zhang, C., Liu, F., Nie, P., & He, Y. (2013). Rice seed cultivar identification using near-infrared hyperspectral imaging and multivariate data analysis. Sensors, 13(7), 8916–8927.CrossRefGoogle Scholar
  26. Kongbonga, Y. G. M., Ghalila, H., Onana, M. B., & Ben Lakhdar, Z. (2014). Classification of vegetable oils based on their concentration of saturated fatty acids using laser induced breakdown spectroscopy (LIBS). Food Chemistry, 147, 327–331.CrossRefGoogle Scholar
  27. Kumar, R., Rai, A. K., Alamelu, D., & Aggarwal, S. K. (2013). Monitoring of toxic elements present in sludge of industrial waste using CF-LIBS. Environmental Monitoring and Assessment, 185(1), 171–180.CrossRefGoogle Scholar
  28. Lasheras, R. J., Anzano, J., Bello-Gálvez, C., Escudero, M., & Cáceres, J. (2016). Quantitative analysis of roman archeological ceramics by laser-induced breakdown spectroscopy. Analytical Letters, 50(8), 1325–1334.CrossRefGoogle Scholar
  29. Li, W., Huang, L., Yao, M., Liu, M., & Chen, T. (2014). Investigation of Pb in Gannan navel orange with contaminant in controlled conditions by laser-induced breakdown spectroscopy. Journal of Applied Spectroscopy, 81(5), 850–854.CrossRefGoogle Scholar
  30. Liu, J., Li, Z., Hu, F., & Chen, T. (2015). A THz spectroscopy nondestructive identification method for transgenic cotton seed based on GA-SVM. Optical and Quantum Electronics, 47(2), 313–322.CrossRefGoogle Scholar
  31. Mathur, C., Kathuria, P. C., Dahiya, P., & Singh, A. B. (2015). Lack of detectable allergenicity in genetically modified maize containing “Cry” proteins as compared to native maize based on in silico & in vitro analysis. PLoS One, 10(2), e0117340.CrossRefGoogle Scholar
  32. Menkir, A., Chikoye, D., & Lum, F. (2010). Incorporating an herbicide resistance gene into tropical maize with inherent polygenic resistance to control Striga hermonthica (Del.) Benth. Plant Breeding, 129(4), 385–392.Google Scholar
  33. Moncayo, S., Manzoor, S., Rosales, J. D., Anzano, J., & Caceres, J. O. (2017). Qualitative and quantitative analysis of milk for the detection of adulteration by laser induced breakdown spectroscopy (LIBS). Food Chemistry, 232, 322–328.CrossRefGoogle Scholar
  34. Mousavi, S. J., Farsani, M. H., Darbani, S. M. R., Mousaviazar, A., Soltanolkotabi, M., & Majd, A. E. (2016). CN and C2 vibrational spectra analysis in molecular LIBS of organic materials. Applied Physics B, 122(5), 1–16.CrossRefGoogle Scholar
  35. Multari, R. A., Cremers, D. A., Dupre, J. A., & Gustafson, J. E. (2013a). Detection of biological contaminants on foods and food surfaces using laser-induced breakdown spectroscopy (LIBS). Journal of Agricultural and Food Chemistry, 61(36), 8687–8694.CrossRefGoogle Scholar
  36. Multari, R. A., Cremers, D. A., Scott, T., & Kendrick, P. (2013b). Detection of pesticides and dioxins in tissue fats and rendering oils using laser-induced breakdown spectroscopy (LIBS). Journal of Agricultural and Food Chemistry, 61(10), 2348–2357.CrossRefGoogle Scholar
  37. Nap, J. P., Metz, P. L., Escaler, M., & Conner, A. J. (2010). The release of genetically modified crops into the environment. Part I. overview of current status and regulations. Plant Journal, 33(1), 1–18.CrossRefGoogle Scholar
  38. Njira, K. O. W., & Nabwami, J. (2015). A review of effects of nutrient elements on crop quality. (2015). African Journal of Food Agriculture Nutrition and Development, 15(1), 9777–9783.Google Scholar
  39. Noguchi, A., Akiyama, H., Nakamura, K., Sakata, K., Minegishi, Y., Mano, J., Takabatake, R., Futo, S., Kitta, K., Teshima, R., Kondo, K., & Nishimaki-Mogami, T. (2014). A novel trait-specific real-time PCR method enables quantification of genetically modified (GM) maize content in ground grain samples containing stacked GM maize. European Food Research and Technology, 240(2), 413–422.CrossRefGoogle Scholar
  40. Paliwal, R. L., & Sprague, E. W. (1981). Improving adaptation and yield dependability in maize in the developing world. Cimmyt.Google Scholar
  41. Peng, C., Feng, X., He, Y., Zhao, Y., & Xu, J. (2018). Discrimination of transgenic maize containing the Cry 1 Ab/ Cry 2 Aj and G10evo genes using near infrared spectroscopy (NIR). Spectroscopy and Spectral Analysis, 38(4), 1095–1100. (in Chinese with English abstract ).Google Scholar
  42. Peng, J., He, Y., Ye, L., Shen, T., Liu, F., Kong, W., Liu, X., & Zhao, Y. (2017a). Moisture influence reducing method for heavy metals detection in plant materials using laser-induced breakdown spectroscopy: a case study for chromium content detection in rice leaves. Analytical Chemistry, 89(14), 7593–7600.CrossRefGoogle Scholar
  43. Peng, J., Liu, F., Kong, W., Zhang, C., Yu, K., & He, Y. (2017b). Rapid identification of varieties of walnut powder based on laser-induced breakdown spectroscopy. Transactions of the ASABE, 60(1), 19–28.CrossRefGoogle Scholar
  44. Peng, J., Liu, F., Zhou, F., Song, K., Zhang, C., Ye, L., & He, Y. (2016). Challenging applications for multi-element analysis by laser-induced breakdown spectroscopy in agriculture: a review. TrAC Trends in Analytical Chemistry, 85, 260–272.CrossRefGoogle Scholar
  45. Peng, J., Song, K., Zhu, H., Kong, W., Liu, F., Shen, T., & He, Y. (2017c). Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy. Scientific reports, 7, 44551–44559.CrossRefGoogle Scholar
  46. Qi, N., Zhang, Z., Xiang, Y., Yang, Y., Liang, X., & Harrington, P. d. B. (2015). Terahertz time-domain spectroscopy combined with support vector machines and partial least squares-discriminant analysis applied for the diagnosis of cervical carcinoma. Analytical Methods, 7(6), 2333–2338.CrossRefGoogle Scholar
  47. Qiu, S., Gao, L., & Wang, J. (2015). Classification and regression of ELM, LVQ and SVM for E-nose data of strawberry juice. Journal of Food Engineering, 144, 77–85.CrossRefGoogle Scholar
  48. Rahman, M., Zaman, M., Shaheen, T., Irem, S., & Zafar, Y. (2015). Safe use of Cry genes in genetically modified crops. Environmental Chemistry Letters, 13(3), 239–249.CrossRefGoogle Scholar
  49. Razavi, A., Malhotra, I., Ghosh, A., Pusztai-Carey, M., Marks, J., & King, C. (2017). Antibodies as epidemiological markers of genetically modified crop exposure: detection of Cry1Ab-specific IgG. Food and Agricultural Immunology, 28(5), 779–788.CrossRefGoogle Scholar
  50. Rehse, S. J., Salimnia, H., & Miziolek, A. W. (2012). Laser-induced breakdown spectroscopy (LIBS): an overview of recent progress and future potential for biomedical applications. Journal of Medical Engineering and Technology, 36(2), 77–89.CrossRefGoogle Scholar
  51. Rui, Y., Luo, Y., Huang, k., Wang, W., & Zhang, L. (2005). Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn. Spectroscopy and Spectral Analysis, 25(10), 1581–1583. (in Chinese with English abstract ).Google Scholar
  52. Sgarbossa, A., Costa, C., Menesatti, P., Antonucci, F., Pallottino, F., Zanetti, M., Grigolato, S., & Cavalli, R. (2015). A multivariate SIMCA index as discriminant in wood pellet quality assessment. Renewable Energy, 76, 258–263.CrossRefGoogle Scholar
  53. Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307–327.CrossRefGoogle Scholar
  54. Sosanúñez, G. S. (2014). Direction of policy convergence in the EU: the case of genetically modified maize labelling policies. Romanian Journal of European Affairs, 14(3), 36–49.Google Scholar
  55. Sucher, J., Boni, R., Yang, P., Rogowsky, P., Buchner, H., Kastner, C., Kumlehn, J., Krattinger, S. G., & Keller, B. (2017). The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize. Plant Biotechnology Journal, 15(4), 489–496.CrossRefGoogle Scholar
  56. Unnikrishnan, V. K., Choudhari, K. S., Kulkarni, S. D., Nayak, R., Kartha, V. B., & Santhosh, C. (2013). Analytical predictive capabilities of laser induced breakdown spectroscopy (LIBS) with principal component analysis (PCA) for plastic classification. RSC Advances, 3(48), 25872.CrossRefGoogle Scholar
  57. Vítková, G., Prokeš, L., Novotný, K., Pořízka, P., Novotný, J., Všianský, D., Čelko, L., & Kaiser, J. (2014). Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 101, 191–199.CrossRefGoogle Scholar
  58. Wang, L., Haccou, P., & Lu, B. (2016). High-resolution gene flow model for assessing environmental impacts of transgene escape based on biological parameters and wind speed. PLoS One, 11(3), e0149563.CrossRefGoogle Scholar
  59. Wang, X., Chen, X., Xu, J., Wang, P., & Shen, W. (2014). Multiplex event-specific qualitative polymerase chain reaction for detecting three transgenic rice lines and application of a standard plasmid as a quantitative reference molecule. Analytical Biochemistry, 464, 1–8.CrossRefGoogle Scholar
  60. Yan, S., Zhu, J., Zhu, W., Li, Z., Shelton, A. M., Luo, J., Cui, J., Zhang, Q., & Liu, X. (2015). Pollen-mediated gene flow from transgenic cotton under greenhouse conditions is dependent on different pollinators. Scientific Reports, 5(1), 15917–15925.CrossRefGoogle Scholar
  61. Yang, Y., Lou, S., Zhang, X., & Bai, L. (2008). Comparison of attitudes and policies on GMC among USA, EU and Japan and the enlightenment to China. Ecological Economy, 7, 129–132 (in Chinese with English abstract ).Google Scholar
  62. Yao, C., Xu, M., Tian, W., & Tang, Z. (2007). Potential variability of trans-lysozyme gene rice under ecological conditions of Yunnan. Chinese Journal of Ecology, 26(2), 209–212 (in Chinese with English abstract ).Google Scholar
  63. Yu, K., Zhao, Y., Liu, F., & He, Y. (2016). Laser-induced breakdown spectroscopy coupled with multivariate chemometrics for variety discrimination of soil. Scientific Reports, 6(1), 27574–27583.CrossRefGoogle Scholar
  64. Yu, X., Li, Y., Gu, X., Bao, J., Yang, H., & Sun, L. (2014). Laser-induced breakdown spectroscopy application in environmental monitoring of water quality: a review. Environmental Monitoring and Assessment, 186(12), 8969–8980.CrossRefGoogle Scholar
  65. Zhang, T., Wu, S., Dong, J., Wei, J., Wang, K., Tang, H., Yang, X., & Li, H. (2015). Quantitative and classification analysis of slag samples by laser induced breakdown spectroscopy (LIBS) coupled with support vector machine (SVM) and partial least square (PLS) methods. Journal of Analytical Atomic Spectrometry, 30(2), 368–374.CrossRefGoogle Scholar
  66. Zhang, X., Liu, F., He, Y., & Li, X. (2012). Application of hyperspectral imaging and chemometric calibrations for variety discrimination of maize seeds. Sensors, 12(12), 17234–17246.CrossRefGoogle Scholar
  67. Zhao, F., Ren, S., Sun, C., Guo, Z., & Shen, S. (2012). Effect of transfection and expression of exogenous Pea-Fer gene on major mineral elements accumulation in rice plant and grain. Journal of Plant Genetic Resources, 12(3), 443–448 (in Chinese with English abstract ).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiaodan Liu
    • 1
    • 2
  • Xuping Feng
    • 1
    • 2
  • Fei Liu
    • 1
    • 2
  • Jiyu Peng
    • 1
    • 2
  • Yong He
    • 1
    • 2
    Email author
  1. 1.College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory of Spectroscopy SensingMinistry of AgricultureHangzhouChina

Personalised recommendations