Combination Effect of High-Pressure Processing and Essential Oil (Melissa officinalis Extracts) or Their Constituents for the Inactivation of Escherichia coli in Ground Beef

  • Shih-Yung Chien
  • Shiowshuh SheenEmail author
  • Christopher Sommers
  • Lee-Yan SheenEmail author
Original Paper


The inactivation of a five-strain cocktail of Escherichia coli by high-pressure processing (HPP) and Melissa officinalis leaf extracts (MoEOs) or their similar chemical constituents (CCs; citral, geraniol, β-caryophyllene or a mixture) in fresh ground beef was investigated. The pathogenic bacteria post-process growth and survival were further determined at 4 °C, 7 days storage. Ground beef pressurized at 300, 350, and 400 MPa for 15 min in combination with 0.5 and 1.0% of MoEOs or CCs was investigated. A 5-log CFU/g reduction was achieved with properly selected pressure and MoEOs, CCs, or MIX [a reconstituted mixture of 1/3 citral, 1/3 geraniol, and 1/3 β-caryophyllene (weight basis)] concentration. Without the HPP, the inactivation potential of citral, geraniol, MoEOs, or MIX was similar and negligible, while under pressure, the inactivation potential increased significantly as the pressure and concentration increased. The Escherichia coli strains tested include Shiga toxin-producing E. coli (STEC) O157, O111, O121, O128, and O145, which are involved in many food-borne pathogen outbreaks worldwide. For 24 h under refrigeration, 1.0% citral, 1.0% geraniol, 1.0% MIX, and 1.0% MoEOs with 350 and 400 MPa could reduce ca. 3–6 log CFU/g of E. coli. The inactivation potential continued to show effectiveness during the low-temperature storage test (e.g., 4 °C, 7 days). In conclusion, the combination treatment of HPP and M. officinalis extracts was found to be significantly effective in the inactivation of E. coli. Transmission electron microscope (TEM) images further demonstrated the cell structure damaged under HPP and antimicrobial compound stresses.


HPP Pathogenic E. coli Ground beef Melissa officinalis Essential oils 



This research was supported by the USDA Agricultural Research Service National Program 108 (Food Safety) Project # 1935-42000-078-00D.

The Natural Products Innovation Laboratories located in Chiayi Industry Innovation and Research Center (Chiayi, Taiwan) is acknowledged for providing equipment/facility to prepare essential oil extracts.

We also would like to thank Dr. Alberto Nuñez for his generous assistance in analyzing the components of essential oil extracts with GC-MS and Mr. Joseph Uknalis for his delicate work on the electron microscopy images (TEM). Both researchers are with the USDA/ARS/ERRC.


  1. Abdellatif, F., Boudjella, H., Zitouni, A., & Hassani, A. (2014). Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L. EXCLI Journal, 13, 772–781.PubMedPubMedCentralGoogle Scholar
  2. Angelov, G., Penchev, P., Condoret, J. S., & Camy, S. (2010). Optimizing the process of supercritical extraction of lemon balm (Melissa Officinalis L.). Comptes-rendus de l'Académie Bulgare des Sciences, 63, 1141–1146.Google Scholar
  3. Bajpai, V. K., Baek, K. H., & Kang, S. C. (2012). Control of Salmonella in foods by using essential oils: a review. Food Research International, 45(2), 722–734.CrossRefGoogle Scholar
  4. Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: a review. Journal of Pharmaceutical Analysis, 6(2), 71–79.CrossRefGoogle Scholar
  5. Belda-Galbis, C. M., Leufvén, A., Martínez, A., & Rodrigo, D. (2013). Quantitative assessment of citral antimicrobial potential at different temperatures. In Microbial pathogens and strategies for combating them: science, technology and education (Vol. 2, pp. 1257–1264). Badajoz: Formatex Research Center.Google Scholar
  6. Calo, J. R., Crandall, P. G., O'Bryan, C. A., & Ricke, S. C. (2015). Essential oils as antimicrobials in food systems—a review. Food Control, 54, 111–119.CrossRefGoogle Scholar
  7. Carson, C. F., Mee, B. J., & Riley, T. V. (2002). Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrobial Agents and Chemotherapy, 46(6), 1914–1920.CrossRefGoogle Scholar
  8. Chien, S. Y., Sheen, S., Sommers, C. H., & Sheen, L. Y. (2016). Modeling the inactivation of intestinal pathogenic Escherichia coli O157: H7 and uropathogenic E. coli in ground chicken by high pressure processing and thymol. Frontiers in Microbiology, 7, 920.PubMedPubMedCentralGoogle Scholar
  9. Chien, S. Y., Sheen, S., Sommers, C., & Sheen, L. Y. (2017). Modeling the inactivation of Escherichia coli O157: H7 and uropathogenic E. coli in ground beef by high pressure processing and citral. Food Control, 73, 672–680.CrossRefGoogle Scholar
  10. Dahham, S. S., Tabana, Y. M., Iqbal, M. A., Ahamed, M. B., Ezzat, M. O., Majid, A. S., & Majid, A. M. (2015). The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules, 20(7), 11808–11829.CrossRefGoogle Scholar
  11. Duranton, F., Simonin, H., Guyon, C., Jung, S., & de Lamballerie, M. (2015). High-pressure processing of meats and seafood. In Emerging technologies for food processing (2nd ed., pp. 35–63).Google Scholar
  12. Espina, L., García-Gonzalo, D., Laglaoui, A., Mackey, B. M., & Pagán, R. (2013). Synergistic combinations of high hydrostatic pressure and essential oils or their constituents and their use in preservation of fruit juices. International Journal of Food Microbiology, 161(1), 23–30.CrossRefGoogle Scholar
  13. Esteve, M. J., & Frígola, A. (2007). Refrigerated fruit juices: quality and safety issues. Advances in Food and Nutrition Research, 52, 103–139.CrossRefGoogle Scholar
  14. European Food Safety Authority (EFSA) (2011). Technical report: Shiga toxin/verotoxin-producing Escherichia coli in humans, food and animals in the EU/EEA, with special reference to the German outbreak strain STEC O104.
  15. Eustice, R. F., & Bruhn, C. M. (2006). Consumer acceptance and marketing of irradiated foods. Food Irradiation Research and Technology, 2, 173–195.Google Scholar
  16. Fan, X., Niemira, B. A., Rajkowski, K. T., Phillips, J., & Sommers, C. H. (2004). Sensory evaluation of irradiated ground beef patties for the National School Lunch Program. Journal of Food Science, 69(9).CrossRefGoogle Scholar
  17. Ferens, W. A., & Hovde, C. J. (2011). Escherichia coli O157: H7: animal reservoir and sources of human infection. Foodborne Pathogens and Disease, 8(4), 465–487.CrossRefGoogle Scholar
  18. Feyaerts, J., Rogiers, G., Corthouts, J., & Michiels, C. W. (2015). Thiol-reactive natural antimicrobials and high pressure treatment synergistically enhance bacterial inactivation. Innovative Food Science & Emerging Technologies, 27, 26–34.CrossRefGoogle Scholar
  19. Gänzle, M., & Liu, Y. (2015). Mechanisms of pressure-mediated cell death and injury in Escherichia coli: from fundamentals to food applications. Frontiers in Microbiology, 6, 599.CrossRefGoogle Scholar
  20. Gayán, E., Torres, J. A., & Paredes-Sabja, D. (2012). Hurdle approach to increase the microbial inactivation by high pressure processing: effect of essential oils. Food Engineering Reviews, 4(3), 141–148.CrossRefGoogle Scholar
  21. Guillou, S., Lerasle, M., Simonin, H., & Federighi, M. (2017). High-pressure processing of meat and meat products. Emerging Technologies in Meat Processing: Production, Processing and Technology, 37-101.Google Scholar
  22. Guyon, C., Meynier, A., & De Lamballerie, M. (2016). Protein and lipid oxidation in meat: a review with emphasis on high-pressure treatments. Trends in Food Science & Technology, 50, 131–143.CrossRefGoogle Scholar
  23. Gyawali, R., & Ibrahim, S. A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412–429.CrossRefGoogle Scholar
  24. Hauben, K. J., Bartlett, D. H., Soontjens, C. C., Cornelis, K., Wuytack, E. Y., & Michiels, C. W. (1997). Escherichia coli mutants resistant to inactivation by high hydrostatic pressure. Applied and Environmental Microbiology, 63(3), 945–950.PubMedPubMedCentralGoogle Scholar
  25. Hsu, H., Sheen, S., Sites, J., Huang, L., & Wu, J. S. B. (2014). Effect of high pressure treatment on the survival of Shiga toxin-producing Escherichia coli in strawberry puree. Food Microbiology, 40, 25–30.CrossRefGoogle Scholar
  26. Hsu, H., Sheen, S., Sites, J., Cassidy, J., Scullen, B., & Sommers, C. (2015). Effect of high pressure processing on the survival of Shiga toxin-producing Escherichia coli (Big Six vs. O157: H7) in ground beef. Food Microbiology, 48, 1–7.CrossRefGoogle Scholar
  27. Jalal, Z., El Atki, Y., Lyoussi, B., & Abdellaoui, A. (2015). Phytochemistry of the essential oil of Melissa officinalis L. growing wild in Morocco: preventive approach against nosocomial infections. Asian Pacific Journal of Tropical Biomedicine, 5(6), 458–461.CrossRefGoogle Scholar
  28. Jayasena, D. D., & Jo, C. (2013). Essential oils as potential antimicrobial agents in meat and meat products: a review. Trends in Food Science & Technology, 34(2), 96–108.CrossRefGoogle Scholar
  29. Karatzas, A. K., Kets, E. P. W., Smid, E. J., & Bennik, M. H. J. (2001). The combined action of carvacrol and high hydrostatic pressure on Listeria monocytogenes Scott A. Journal of Applied Microbiology, 90(3), 463–469.CrossRefGoogle Scholar
  30. Koseki, S., & Yamamoto, K. (2006). Recovery of Escherichia coli ATCC 25922 in phosphate buffered saline after treatment with high hydrostatic pressure. International Journal of Food Microbiology, 110(1), 108–111.CrossRefGoogle Scholar
  31. Lambert, R. J. W., Skandamis, P. N., Coote, P. J., & Nychas, G. J. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, 91(3), 453–462.CrossRefGoogle Scholar
  32. Li, H., & Gänzle, M. (2016). Effect of hydrostatic pressure and antimicrobials on survival of Listeria monocytogenes and enterohaemorrhagic Escherichia coli in beef. Innovative Food Science & Emerging Technologies, 38, 321–327.CrossRefGoogle Scholar
  33. López-González, V., Murano, P. S., Brennan, R. E., & Murano, E. A. (2000). Sensory evaluation of ground beef patties irradiated by gamma rays versus electron beam under various packaging conditions. Journal of Food Quality, 23(2), 195–204.CrossRefGoogle Scholar
  34. Low, J. C., McKendrick, I. J., McKechnie, C., Fenlon, D., Naylor, S. W., Currie, C., & Gally, D. L. (2005). Rectal carriage of enterohemorrhagic Escherichia coli O157 in slaughtered cattle. Applied and Environmental Microbiology, 71(1), 93–97.CrossRefGoogle Scholar
  35. Luchsinger, S. E., Kropf, D. H., Iv, E. C., Zepeda, C. G., Hunt, M. C., Stroda, S. L., & Kastner, C. L. (1997). Sensory analysis of irradiated ground beef patties and whole muscle beef. Journal of Sensory Studies, 12(2), 105–126.CrossRefGoogle Scholar
  36. Mimica-Dukic, N., Bozin, B., Sokovic, M., & Simin, N. (2004). Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. Journal of Agricultural and Food Chemistry, 52(9), 2485–2489.CrossRefGoogle Scholar
  37. Moreira, M. R., Ponce, A. G., Del Valle, C. E., & Roura, S. I. (2005). Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT-Food Science and Technology, 38(5), 565–570.CrossRefGoogle Scholar
  38. Mújica-Paz, H., Valdez-Fragoso, A., Samson, C. T., Welti-Chanes, J., & Torres, J. A. (2011). High-pressure processing technologies for the pasteurization and sterilization of foods. Food and Bioprocess Technology, 4(6), 969–985.CrossRefGoogle Scholar
  39. National Advisory Committee on Microbiological Criteria for Foods (NACMCF). (2006). Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization. Journal of Food Protection, 69(5), 1190–1216.CrossRefGoogle Scholar
  40. Nimet, G., Da Silva, E. A., Palú, F., Dariva, C., dos Santos Freitas, L., Neto, A. M., & Cardozo Filho, L. (2011). Extraction of sunflower (Heliantus annuus L.) oil with supercritical CO2 and subcritical propane: experimental and modeling. Chemical Engineering Journal, 168(1), 262–268.CrossRefGoogle Scholar
  41. Ogihara, H., Yatuzuka, M., Horie, N., Furukawa, S., & Yamasaki, M. (2009). Synergistic effect of high hydrostatic pressure treatment and food additives on the inactivation of Salmonella enteritidis. Food Control, 20(11), 963–966.CrossRefGoogle Scholar
  42. Pantelidou M., Gialitaki M., Chorianopoulos N., & Skandamis P. (2016). The effect of oregano essential oil encapsulated in liposomes and high pressure processing on the survival and heat tolerance of Escherichia coli O157:H7 in ground beef. IAFP’s European symposium on food safety (P1-07).Google Scholar
  43. Peev, G., Penchev, P., Peshev, D., & Angelov, G. (2011). Solvent extraction of rosmarinic acid from lemon balm and concentration of extracts by nanofiltration: effect of plant pre-treatment by supercritical carbon dioxide. Chemical Engineering Research and Design, 89(11), 2236–2243.CrossRefGoogle Scholar
  44. Prakash, B., Kedia, A., Mishra, P. K., & Dubey, N. K. (2015). Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities—potentials and challenges. Food Control, 47, 381–391.CrossRefGoogle Scholar
  45. Rendueles, E., Omer, M. K., Alvseike, O., Alonso-Calleja, C., Capita, R., & Prieto, M. (2011). Microbiological food safety assessment of high hydrostatic pressure processing: a review. LWT-Food Science and Technology, 44(5), 1251–1260.CrossRefGoogle Scholar
  46. Rhee, M. S., Lee, S. Y., Hillers, V. N., McCurdy, S. M., & Kang, D. H. (2003). Evaluation of consumer-style cooking methods for reduction of Escherichia coli O157: H7 in ground beef. Journal of Food Protection, 66(6), 1030–1034.CrossRefGoogle Scholar
  47. Sadraei, H., Ghannadi, A., & Malekshahi, K. (2003). Relaxant effect of essential oil of Melissa officinalis and citral on rat ileum contractions. Fitoterapia, 74(5), 445–452.CrossRefGoogle Scholar
  48. Sheen, S., Cassidy, J., Scullen, B., Uknalis, J., & Sommers, C. (2015a). Inactivation of Salmonella spp. in ground chicken using high pressure processing. Food Control, 57, 41–47.CrossRefGoogle Scholar
  49. Sheen, S., Cassidy, J., Scullen, B., & Sommers, C. (2015b). Inactivation of a diverse set of Shiga toxin-producing Escherichia coli in ground beef by high pressure processing. Food Microbiology, 52, 84–87.CrossRefGoogle Scholar
  50. Sheen, S., Huang, C. Y., Ramos, R., Chien, S. Y., Scullen, B., & Sommers, C. (2018). Lethality prediction for Escherichia coli O157:H7 and uropathogenic E. coli in ground chicken treated with high pressure processing and trans-cinnamaldehyde. Journal of Food Science, 83(3), 740–749. Scholar
  51. Sikkema, J., de Bont, J. A., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews, 59(2), 201–222.PubMedPubMedCentralGoogle Scholar
  52. Silva, S. D., Sato, A., Lage, C. L. S., Gil, S., da Silva, R. A., Azevedo, D. D. A., & Esquibel, M. A. (2005). Essential oil composition of Melissa officinalis L. in vitro produced under the influence of growth regulators. Journal of the Brazilian Chemical Society, 16(6B), 1387–1390.CrossRefGoogle Scholar
  53. Smid, E. J., & Gorris, L. G. (1999). Natural antimicrobials for food preservation. Handbook of Food Preservation, 285–308Google Scholar
  54. Sommers, C. H., Scullen, O. J., & Sheen, S. (2016). Inactivation of uropathogenic Escherichia coli in ground chicken meat using high pressure processing and gamma radiation, and in purge and chicken meat surfaces by ultraviolet light. Frontiers in Microbiology, 7, 413.CrossRefGoogle Scholar
  55. Somolinos, M., García, D., Pagán, R., & Mackey, B. (2008). Relationship between sublethal injury and microbial inactivation by the combination of high hydrostatic pressure and citral or tert-butyl hydroquinone. Applied and Environmental Microbiology, 74(24), 7570–7577.CrossRefGoogle Scholar
  56. Stanojevic, D., Comic, L. J., Stefanovic, O., & Sukdolak, S. S. (2010). In vitro synergistic antibacterial activity of Melissa officinalis L. and some preservatives. Spanish Journal of Agricultural Research, 8(1), 109–115.CrossRefGoogle Scholar
  57. Surendran Nair, M., Lau, P., Belskie, K., Fancher, S., Chen, C. H., Karumathil, D. P., & Upadhyay, A. (2016). Potentiating the heat inactivation of Escherichia coli O157: H7 in ground beef patties by natural antimicrobials. Frontiers in Microbiology, 7, 15.CrossRefGoogle Scholar
  58. Taherpour, A., Maroofi, H., Rafie, Z., & Larijani, K. (2012). Chemical composition analysis of the essential oil of Melissa officinalis L. from Kurdistan, Iran by HS/SPME method and calculation of the biophysicochemical coefficients of the components. Natural Product Research, 26(2), 152–160.CrossRefGoogle Scholar
  59. Tamplin, M. L., Paoli, G., Marmer, B. S., & Phillips, J. (2005). Models of the behavior of Escherichia coli O157: H7 in raw sterile ground beef stored at 5 to 46 °C. International Journal of Food Microbiology, 100(1–3), 335–344.CrossRefGoogle Scholar
  60. Tomadoni, B., Cassani, L., Moreira, M. R., & Ponce, A. (2015). Efficacy of vanillin and geraniol in reducing Escherichia coli O157: H7 on strawberry juice. LWT-Food Science and Technology, 64(2), 554–557.CrossRefGoogle Scholar
  61. USDA Food Safety and Inspection Service (FSIS). (2012). Risk profile for pathogenic non-O157 Shiga toxin-producing Escherichia coli. Washington, DC: Office of Public Health Science, Office of Policy and Program Development, Food Safety and Inspection Service, United States Department of Agriculture.Google Scholar
  62. Vidović, S., Mujić, I., Zeković, Z., Lepojević, Ž., Milošević, S., & Jokić, S. (2011). Extraction of fatty acids from Boletus edulis by subcritical and supercritical carbon dioxide. Journal of the American Oil Chemists' Society, 88(8), 1189–1196.CrossRefGoogle Scholar
  63. Wasilenko, J. L., Fratamico, P. M., Narang, N., Tillman, G. E., Ladely, S., Simmons, M., & Cray Jr., W. C. (2012). Influence of primer sequences and DNA extraction method on detection of non-O157 Shiga toxin-producing Escherichia coli in ground beef by real-time PCR targeting the eae, stx, and serogroup-specific genes. Journal of Food Protection, 75(11), 1939–1950.CrossRefGoogle Scholar
  64. WHO (2018). Enterohaemorrhagic Escherichia coli (EHEC). Available at: Accessed 7 Feb 2018.
  65. Yuste, J., Capellas, M., Fung, D. Y., & Mor-Mur, M. (2004). Inactivation and sublethal injury of foodborne pathogens by high pressure processing: evaluation with conventional media and thin agar layer method. Food Research International, 37(9), 861–866.CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Institute of Food Science and TechnologyThe National Taiwan UniversityTaipeiTaiwan
  2. 2.Eastern Regional Research Center, Agricultural Research ServiceU.S. Department of AgricultureWyndmoorUSA

Personalised recommendations