Food and Bioprocess Technology

, Volume 12, Issue 2, pp 281–287 | Cite as

Electrospun Nanofibers Containing TiO2 for the Photocatalytic Degradation of Ethylene and Delaying Postharvest Ripening of Bananas

  • Zhu Zhu
  • Yibo Zhang
  • Yanli ShangEmail author
  • Yongqiang WenEmail author
Original Paper


The study aimed to develop a nanofiber film for photocatalytic degradation of ethylene and slowing down the ripening of banana fruit. Nanofibers containing different amounts of TiO2 nanoparticles (1 wt%, 5 wt%, and 10 wt%) were prepared using electrospinning method. Nanofibers containing 5 wt% TiO2 exhibited a nano-scale structure, good nanoparticle uniformity, and an anatase phase as characterized by scanning electron microscopy, energy dispersive X-ray spectrometer, transmission electron microscopy, and X-ray diffraction. Nanofibers containing 5 wt% TiO2 were tested in a photocatalytic reactor and showed higher photocatalytic activity for the degradation of ethylene. The utility of the photocatalytic reaction was further confirmed via a banana fruit-ripening test. The TiO2 nanofiber successfully delayed the color change and softening of bananas during storage. The results suggest that the TiO2 nanofiber offers photocatalytic degradation of ethylene and could potentially be used as packaging material for delaying postharvest fruit ripening.


Electrospun nanofiber TiO2 Photocatalysis Ethylene degradation Banana ripening 


Funding Information

The study was supported by National Key Research and Development Program of China (2018YFD0401302), Beijing Natural Science Foundation (2172039), and the Fundamental Research Funds for the Central Universities (FRF-BR-17-033A).


  1. Alexander, L., & Grierson, D. (2002). Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. Journal of Experimental Botany, 53(377), 2039–2055.CrossRefGoogle Scholar
  2. Aytac, Z., Ipek, S., Durgun, E., Tekinay, T., & Uyar, T. (2017). Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chemistry, 233, 117–124.CrossRefGoogle Scholar
  3. Chang, K. L., Sekiguchi, K., Wang, Q., & Zhao, F. (2013). Removal of ethylene and secondary organic aerosols using UV-C254 with TiO2 catalyst. Aerosol and Air Quality Research, 13(2), 618–626.CrossRefGoogle Scholar
  4. de Chiara, M. L. V., Pal, S., Licciulli, A., Amodio, M. L., & Colelli, G. (2015). Photocatalytic degradation of ethylene on mesoporous TiO2/SiO2 nanocomposites: Effects on the ripening of mature green tomatoes. Biosystems Engineering, 132, 61–70.CrossRefGoogle Scholar
  5. Hoseinnejad, M., Jafari, S. M., & Katouzian, I. (2018). Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical Reviews in Microbiology, 44(2), 161–181.CrossRefGoogle Scholar
  6. Hussain, M., Bensaid, S., Geobaldo, F., Saracco, G., & Russo, N. (2011). Photocatalytic degradation of ethylene emitted by fruits with TiO2 nanoparticles. Industrial & Engineering Chemistry Research, 50(5), 2536–2543.CrossRefGoogle Scholar
  7. Im, J. S., Kim, M. I., & Lee, Y. (2008). Preparation of PAN-based electrospun nanofiber webs containing TiO2 for photocatalytic degradation. Materials Letters, 62(21–22), 3652–3655.CrossRefGoogle Scholar
  8. Keller, N., Ducamp, M. N., Robert, D., & Keller, V. (2013). Ethylene removal and fresh product storage: A challenge at the frontiers of chemistry. Toward an approach by photocatalytic oxidation. Chemical Reviews, 113(7), 5029–5070.CrossRefGoogle Scholar
  9. Korehei, R., & Kadla, J. F. (2014). Encapsulation of T4 bacteriophage in electrospun poly (ethylene oxide)/cellulose diacetate fibers. Carbohydrate Polymers, 100, 150–157.CrossRefGoogle Scholar
  10. Kriegel, C., Arrechi, A., Kit, K., McClements, D. J., & Weiss, J. (2008). Fabrication, functionalization, and application of electrospun biopolymer nanofibers. Critical Reviews in Food Science and Nutrition, 48(8), 775–797.CrossRefGoogle Scholar
  11. Lazar, M. A., Varghese, S., & Nair, S. S. (2012). Photocatalytic water treatment by titanium dioxide: Recent updates. Catalysts, 2(4), 572–601.CrossRefGoogle Scholar
  12. Liu, Y. W., Wang, S. Y., & Lan, W. T. (2017). Fabrication of antibacterial chitosan-PVA blended film using electrospray technique for food packaging applications. International Journal of Biological Macromolecules, 107, 848–854.CrossRefGoogle Scholar
  13. Maneerat, C., & Hayata, Y. (2006). Efficiency of TiO2 photocatalytic reaction on delay of fruit ripening and removal of off-flavors from the fruit storage atmosphere. Transactions of the ASAE, 49(3), 833–837.CrossRefGoogle Scholar
  14. Maneerat, C., Hayata, Y., Egashira, N., Sakamoto, K., Hamai, Z., & Kuroyanagi, M. (2003). Photocatalytic reaction of TiO2 to decompose ethylene in fruit and vegetables storage. Transactions of the ASAE, 46(3), 725–730.CrossRefGoogle Scholar
  15. Mo, J., Zhang, Y., Xu, Q., Lamson, J. J., & Zhao, R. (2009). Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment, 43(14), 2229–2246.CrossRefGoogle Scholar
  16. Nakata, K., Ochiai, T., Murakami, T., & Fujishima, A. (2012). Photoenergy conversion with TiO2 photocatalysis: New materials and recent applications. Electrochimica Acta, 84, 103–111.CrossRefGoogle Scholar
  17. Pant, H. R., Bajgai, M. P., Nam, K. T., Seo, Y. A., Pandeya, D. R., Hong, S. T., et al. (2011). Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles: A multifunctional nanocomposite textile material. Journal of Hazardous Materials, 185(1), 124–130.CrossRefGoogle Scholar
  18. Pathak, N., Caleb, O. J., Geyer, M., Herppich, W. B., Rauh, C., & Mahajan, P. V. (2017). Photocatalytic and photochemical oxidation of ethylene: Potential for storage of fresh produce—A review. Food and Bioprocess Technology, 10(6), 982–1001.CrossRefGoogle Scholar
  19. Razmjou, A., Mansouri, J., & Chen, V. (2011). The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. Journal of Membrane Science, 378(1–2), 73–84.CrossRefGoogle Scholar
  20. Scariot, V., Paradiso, R., Rogers, H., & De Pascale, S. (2014). Ethylene control in cut flowers: Classical and innovative approaches. Postharvest Biology and Technology, 97, 83–92.CrossRefGoogle Scholar
  21. Tanaka, K., Fukuyoshi, J., Segawa, H., & Yoshida, K. (2006). Improved photocatalytic activity of zeolite- and silica-incorporated TiO2 film. Journal of Hazardous Materials, 137(2), 947–951.CrossRefGoogle Scholar
  22. Tas, C. E., Hendessi, S., Baysal, M., Unal, S., Cebeci, F. C., Menceloglu, Y. Z., et al. (2017). Halloysite nanotubes/polyethylene nanocomposites for active food packaging materials with ethylene scavenging and gas barrier properties. Food and Bioprocess Technology, 10(4), 789–798.CrossRefGoogle Scholar
  23. Tytgat, T., Hauchecorne, B., Abakumov, A. M., Smits, M., Verbruggen, S. W., & Lenaerts, S. (2012). Photocatalytic process optimisation for ethylene oxidation. Chemical Engineering Journal, 209, 494–500.CrossRefGoogle Scholar
  24. Verbruggen, S. W., Ribbens, S., Tytgat, T., Hauchecorne, B., Smits, M., Meynen, V., et al. (2011). The benefit of glass bead supports for efficient gas phase photocatalysis: Case study of a commercial and a synthesised photocatalyst. Chemical Engineering Journal, 174(1), 318–325.CrossRefGoogle Scholar
  25. Watkins, C. B. (2006). The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnology Advances, 24(4), 389–409.CrossRefGoogle Scholar
  26. Yamazaki, S., Tanaka, S., & Tsukamoto, H. (1999). Kinetic studies of oxidation of ethylene over a TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 121(1), 55–61.CrossRefGoogle Scholar
  27. Zhang, J. F., Zhou, P., Liu, J. J., & Yu, J. G. (2014). New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics, 16, 20382–20386.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and BioengineeringUniversity of Science & Technology BeijingBeijingChina
  2. 2.College of Chemistry & Environmental ScienceHebei UniversityBaodingChina

Personalised recommendations