Advertisement

Rheological Analysis of Wheat Flour Dough as Influenced by Grape Peels of Different Particle Sizes and Addition Levels

  • Silvia Mironeasa
  • Mădălina Iuga
  • Dumitru Zaharia
  • Costel Mironeasa
Original Paper
  • 4 Downloads

Abstract

The present study was undertaken to assess the effects generated by grape peels flour (GPF), as a source of dietary fibers, on the white wheat flour (WF) dough rheological behavior. Dynamic and empirical rheological measurements were carried out in order to study the viscoelasticity of GPF-enriched wheat flour-based dough matrices and to identify the main actions of GPF particle size (large, medium, and small) at replacement levels from 0% up to 9%. The water competition of GPF is explained by different water binding and gelling capacities, synergistic and/or antagonistic effects of GPF compounds on the major rheological properties. Power low and Burgers models were successfully fitted with the dynamic oscillatory and creep-recovery data being suitable to interpret viscoelastic behavior of dough. Composite flour dough with smaller particle size presented higher G′ and G″ values at addition level above 5% GPF, exhibiting higher viscous component with concomitantly higher peak viscosity. Creep-recovery tests for samples with small particle size at 5% addition level showed that the elasticity and the recoverable proportion was higher compared to the rest of GPF formulations and control sample. Significant correlations (p < 0.05) were found between several parameters determined by both dynamic and empirical rheological measurements which have essential roles in monitoring GPF-enriched wheat flour dough in a wide set of different kinds of samples. This information could be helpful to optimize the particle size and addition level of GPF that could be useful to produce GPF-enriched designed bread.

Keywords

Wheat flour Grape peels Particle size Dough Viscoelasticity 

Notes

Funding Information

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI – UEFISCDI, project number PN-III-P2-2.1-BG-2016-0136, within PNCDI III.

References

  1. Abebe, W., Ronda, F., Villanueva, M., & Collar, C. (2015). Effect of tef [Eragrostis tef (Zucc.) Trotter] grain flour addition on viscoelastic properties and stickiness of wheat dough matrices and bread loaf volume. European Food Research and Technology, 241(4), 469–478.CrossRefGoogle Scholar
  2. Ahmed, J., Almusallam, A. S., Al-Salman, F., AbdulRahman, M. H., & Al-Salem, E. (2013). Rheological properties of water insoluble date fiber incorporated wheat flour dough. LWT-Food Science and Technology, 51(2), 409–416.CrossRefGoogle Scholar
  3. Almeida, E., Chang, Y., & Steel, C. (2010). Effect of adding different dietary DF sources on farinographic parameters of wheat flour. Cereal Chemistry, 87(6), 566–573.CrossRefGoogle Scholar
  4. Angioloni, A., & Collar, C. (2008). Functional response of diluted dough matrixes in high-fibre systems: a viscometric and rheological approach. Food Research International, 41(8), 803–812.CrossRefGoogle Scholar
  5. Bakare, A. H., Osundahunsi, O. F., & Olusanya, J. O. (2016). Rheological, baking, and sensory properties of composite bread dough with breadfruit (Artocarpus communis Forst) and wheat flours. Food Science & Nutrition, 4(4), 573–587.CrossRefGoogle Scholar
  6. Barros, F., Alviola, J. N., & Rooney, L. W. (2010). Comparison of quality of refined and whole wheat tortillas. Journal of Cereal Science, 51(1), 50–56.CrossRefGoogle Scholar
  7. Boita, E. R., Oro, T., Bressiani, J., Santetti, G. S., Bertolin, T. E., & Gutkoski, L. C. (2016). Rheological properties of wheat flour dough and pan bread with wheat bran. Journal of Cereal Science, 71, 177–182.CrossRefGoogle Scholar
  8. Bono V, (2014). Characterization of fibrous fractions from wine industry by-products and their use in baked goods. https://air.unimi.it/handle/2434/247809#.WqVSYaJdBTY. Accessed 19.04.17.
  9. Bordiga, M., Travaglia, F., Locatelli, M., Arlorio, M., & Coïsson, J. D. (2015). Spent grape pomace as a still potential by-product. International Journal of Food Science & Technology, 50(9), 2022–2031.CrossRefGoogle Scholar
  10. Cappa, C., Lavelli, V., & Mariotti, M. (2015). Fruit candies enriched with grape skin powders: physicochemical properties. LWT-Food Science and Technology, 62(1), 569–575.CrossRefGoogle Scholar
  11. Chen, H., Rubenthaler, G. L., & Schanus, E. G. (1988). Effect of apple fiber and cellulose on the physical properties of wheat flour. Journal of Food Science, 53(1), 304–305.CrossRefGoogle Scholar
  12. Chen, J., Gao, D., Yang, L., & Gao, Y. (2013). Effect of microfluidization process on the functional properties of insoluble dietary fiber. Food Research International, 54(2), 1821–1827.CrossRefGoogle Scholar
  13. Dewettinck, K., Van Bockstaele, F., Kühne, B., Van de Walle, D., Courtens, T. M., & Gellynck, X. (2008). Nutritional value of bread: Influence of processing, food interaction and consumer perception. Journal of Cereal Science, 48(2), 243–257.CrossRefGoogle Scholar
  14. Edwards, N. M., Dexter, J. E., & Scanlon, M. G. (2001). The use of rheological techniques to elucidate durum wheat dough stretch properties. Fifth Italian Conference on Chemical Processing and Engineering Florence Italy, 2, 825–830.Google Scholar
  15. Fărcaş, A. C., Socaci, S. A., Tofană, M., Mureşan, C., Mudura, E., Salanţă, L., & Scrob, S. (2014). Nutritional properties and volatile profile of brewer’s spent grain supplemented bread. Romanian Biotechnological Letters, 19(5), 9705–9714.Google Scholar
  16. Fitzgerald, M. A., Martin, M., Ward, R. M., Park, W. D., & Shead, H. J. (2003). Viscosity of rice flour: a rheological and biological study. Journal of Agricultural and Food Chemistry, 51(8), 2295–2299.PubMedCrossRefGoogle Scholar
  17. Föste, M., Nordlohne, S. D., Elgeti, D., Linden, M. H., Heinz, V., Jekle, M., & Becker, T. (2014). Impact of quinoa bran on gluten-free dough and bread characteristics. European Food Research Technology, 239(5), 767–775.CrossRefGoogle Scholar
  18. Gan, Z., Ellis, P. R., Vaughan, J. G., & Galliard, T. (1989). Some effects of non-endosperm components of wheat and of added gluten on wholemeal bread structure. Journal of Cereal Science, 10(2), 81–91.CrossRefGoogle Scholar
  19. Georgopoulos, T., Larsson, H., & Eliasson, A. C. H. (2004). A comparison of the rheological properties of wheat flour dough and its gluten prepared by ultracentrifugation. Food Hydrocolloids, 18(1), 143–151.CrossRefGoogle Scholar
  20. González-Centeno, M. R., Rosselló, C., Simal, S., Garau, M. C., López, F., & Femenia, A. (2010). Physico-chemical properties of cell wall materials obtained from ten grape varieties and their byproducts: grape pomaces and stems. LWT-Food Science and Technology, 43(10), 1580–1586.CrossRefGoogle Scholar
  21. Han, W., Ma, S., Li, L., Zheng, X. and Wang, X. (2018). Rheological properties of gluten and gluten-starch model doughs containing wheat bran dietary fibre. International Journal of Food Science & Technology. https://onlinelibrary.wiley.com/doi/abs/10.1111/ijfs.13861.
  22. Hemdane, S., Leys, S., Jacobs, P. J., Dornez, E., Delcour, J. A., & Courtin, C. M. (2015). Wheat milling by-products and their impact on bread making. Food Chemistry, 187, 280–289.PubMedCrossRefGoogle Scholar
  23. Iuga, M., Ropciuc, S., & Mironeasa, S. (2017). Antioxidant activity and total phenolic content of grape seeds and peels from Romanian varieties. Food and Environment Safety Journal, 16(4), 276–281.Google Scholar
  24. Jiménez-Escrig, A., & Sánchez-Muniz, F. J. (2000). Dietary fibre from edible seaweeds: chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutrition Research, 20(4), 585–598.CrossRefGoogle Scholar
  25. Kendall, C. W. C., Esfahani, A., & Jenkins, D. J. A. (2010). The link between dietary fibre and human health. Food Hydrocolloids, 24(1), 42–48.CrossRefGoogle Scholar
  26. Korus, J., Witczak, M., Ziobro, R., & Juszczak, L. (2009). The impact of resistant starch on characteristics of gluten-free dough and bread. Food Hydrocolloids, 23(3), 988–995.CrossRefGoogle Scholar
  27. Korus, J., Juszczak, L., Ziobro, R., Witczak, M., Grzelak, K., & Sójka, M. (2012). Defatted strawberry and blackcurrant seeds as functional ingredients of gluten-free bread. Journal of Texture Studies, 43(1), 29–39.CrossRefGoogle Scholar
  28. Kurek, M., Wyrwisz, J., Piwińska, M., & Wierzbicka, A. (2016). The effect of oat fibre powder particle size on the physical properties of wheat bread rolls. Food Technology and Biotechnology, 54(1), 45–51.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Lavelli, V., Torri, L., Zeppa, G., Fiori, L., & Spigno, G. (2016). Recovery of winemaking by-products for innovative food application. Italian Journal of Food Science, 28, 542–564.Google Scholar
  30. Lazaridou, A., Duta, D., Papageorgiou, M., Belc, N., & Biliaderis, C. G. (2007). Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering, 79(3), 1033–1047.CrossRefGoogle Scholar
  31. Lefebvre, J. (2006). An outline of the non-linear viscoelastic behaviour of wheat flour dough in shear. Rheologica Acta, 45(4), 525–538.CrossRefGoogle Scholar
  32. Levrat-Verny, M. A., Coudray, C., Bellanger, J., Lopez, H. W., Demigné, C., Rayssiguier, Y., & Rémésy, C. (1999). Whole wheat flour ensures higher mineral absorption and bioavailability than white wheat flour in rats. British Journal of Nutrition, 82(1), 17–21.PubMedCrossRefGoogle Scholar
  33. Lii, C., Shao, Y., & Tseng, K. (1995). Gelation mechanisms and rheological of rice starch. Cereal Chemistry, 72, 393–400.Google Scholar
  34. Mastromatteo, M., Guida, M., Danza, A., Laverse, J., Frisullo, P., Lampignano, V., & Del Nobile, M. A. (2013). Rheological, microstructural and sensorial properties of durum wheat bread as affected by dough water content. Food Research International Journal, 51(2), 458–466.CrossRefGoogle Scholar
  35. Mildner-Szkudlarz, S., Zawirska-Wojtasiak, R., Szwengiel, A., & Pacyński, M. (2011). Use of grape by-product as a source of dietary fibre and phenolic compounds in sourdough mixed rye bread. International Journal of Food Science & Technology, 46(7), 1485–1493.CrossRefGoogle Scholar
  36. Mira, I., Eliasson, A. C., & Persson, K. (2005). Effect of surfactant structure on the pasting properties of wheat flour and starch suspensions. Cereal Chemistry, 82(1), 44–52.CrossRefGoogle Scholar
  37. Mironeasa, S. (2017). Valorisation of secondary products from wine making. Iasi: Publishing House Performantica.Google Scholar
  38. Mironeasa, S., Zaharia, D., Codină, G., Ropciuc, S., & Iuga, M. (2018). Effects of grape peels addition on mixing, pasting and fermentation characteristics of dough from 480 wheat flour type. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 75(1), 27–35.CrossRefGoogle Scholar
  39. Miś, A. (2011). Interpretation of mechanical spectra of carob fibre and oat wholemeal-enriched wheat dough using non-linear regression models. Journal of Food Engineering, 102(4), 369–379.CrossRefGoogle Scholar
  40. Moreira, R., Chenlo, F., Torres, M. D., & Prieto, D. M. (2010). Influence of the particle size on the rheological behaviour of chestnut flour doughs. Journal of Food Engineering, 100(2), 270–277.CrossRefGoogle Scholar
  41. Moreira, R., Chenlo, F., & Torres, M. D. (2013). Rheology of gluten-free doughs from blends of chestnut and rice flours. Food and Bioprocess Technology, 6(6), 1476–1485.CrossRefGoogle Scholar
  42. Nikolić, N. Č., Stojanović, J. S., Stojanović, G. S., Mastilović, J. S., Karabegović, I. T., Petrović, G. M., & Lazić, M. L. (2013). The effect of some protein rich flours on farinograph properties of the wheat flour. Advanced Technologies, 2, 20–25.Google Scholar
  43. O'Shea, N., Arendt, E. K., & Gallagher, E. (2012). Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innovative Food Science & Emerging Technologies, 16, 1–10.CrossRefGoogle Scholar
  44. Papageorgiou, M., & Skendi, A. (2014). Flour quality and technological abilities. In R. de Pinho Ferreira Guine & P. M. dos Reis Correia (Eds.), Engineering aspects of cereal and cereal-based products (pp. 117–148). New York: CRC Press LLC.Google Scholar
  45. Pedersen, L., Kaack, K., Bergsøe, M. N., & Adler-Nissen, J. (2004). Rheological properties of biscuit dough from different cultivars, and relationship to baking characteristics. Journal of Cereal Science, 39(1), 37–46.CrossRefGoogle Scholar
  46. Pederson, B., Knudsen, K. E. B., & Eggum, B. O. (1989). Nutritive value of cereal products with emphasis on the effect of milling. World Review of Nutrition and Dietetics, 60, 1–5.CrossRefGoogle Scholar
  47. Pedroza, M. A., Amendola, D., Maggi, L., Zalacain, A., De Faveri, D. M., & Spigno, G. (2015). Microwave-assisted extraction of phenolic compounds from dried waste grape skins. International Journal of Food Engineering, 11(3), 359–370.Google Scholar
  48. Ram, B. P., & Nigam, S. N. (1983). Texturometer as a tool for studying varietal differences in wheat flour doughs and gluten proteins. Journal of Texture Studies, 14(3), 245–249.CrossRefGoogle Scholar
  49. Rodriguez, R., Jimenez, A., Fernández-Bolanos, J., Guillen, R., & Heredia, A. (2006). Dietary fibre from vegetable products as source of functional ingredients. Trends in Food Science & Technology, 17(1), 3–15.CrossRefGoogle Scholar
  50. Ronda, F., Pérez-Quirce, S., Angioloni, A., & Collar, C. (2013). Impact of viscous dietary fibres on the viscoelastic behaviour of gluten-free formulated rice doughs: a fundamental and empirical rheological approach. Food Hydrocolloids, 32(2), 252–262.CrossRefGoogle Scholar
  51. Rosell, C. M., Santos, E., & Collar, C. (2006). Mixing properties of fibre-enriched wheat bread doughs: a response surface methodology study. European Food Research and Technology, 223(3), 333–340.CrossRefGoogle Scholar
  52. Sacchetti, G., Pinnavaia, G. G., Guidolin, E., & Dalla Rosa, M. (2004). Effects of extrusion temperature and feed composition on the functional, physical and sensory properties of chestnut and rice flour based snack like products. Food Research International, 37(5), 527–534.CrossRefGoogle Scholar
  53. Sangnark, A., & Noomhorm, A. (2004). Effect of dietary fibre from sugarcane bagasse and sucrose ester on dough and bread properties. Lebensmittel Wissenchaft und Technologie, 37(7), 697–704.CrossRefGoogle Scholar
  54. Sanz-Penella, J. M., Tamayo-Ramos, J. A., Sanz, Y., & Haros, M. (2009). Phytate reduction in bran-enriched bread by phytase-producing bifidobacteria. Journal of Agricultural and Food Chemistry, 57(21), 10239–10244.PubMedCrossRefGoogle Scholar
  55. Saura-Calixto, F. (1998). Antioxidant dietary fiber product: a new concept and a potential food ingredient. Journal of Agricultural and Food Chemistry, 46(10), 4303–4306.CrossRefGoogle Scholar
  56. Schluentz, E. J., Steffe, J. F., & Ng, P. K. (2000). Rheology and microstructure of wheat dough developed with controlled deformation. Journal of Texture Studies, 31(1), 41–54.CrossRefGoogle Scholar
  57. Sidhu, J. P., & Bawa, A. S. (2002). Dough characteristics and baking studies of wheat flour fortified with xanthan gum. International Journal of Food Properties, 5(1), 1–11.CrossRefGoogle Scholar
  58. Sivaramakrishnan, H. P., Senge, B., & Chattopadhyay, P. K. (2004). Rheological properties of rice dough for making rice bread. Journal of Food Engineering, 62(1), 37–45.CrossRefGoogle Scholar
  59. Skendi, A., Papageorgiou, M., & Biliaderis, C. G. (2009). Effect of barley β-glucan molecular size and level on wheat dough rheological properties. Journal of Food Engineering, 91(4), 594–601.CrossRefGoogle Scholar
  60. Skendi, A., Papageorgiou, M., & Biliaderis, C. G. (2010). Influence of water and barley β-glucan addition on wheat dough viscoelasticity. Food Research International Journal, 43, 57–65.CrossRefGoogle Scholar
  61. Šporin, M., Avbelj, M., Kovač, B., & Možina, S. S. (2018). Quality characteristics of wheat flour dough and bread containing grape pomace flour. Food Science and Technology International, 24(3), 251–263.PubMedCrossRefGoogle Scholar
  62. Steffe, J. F. (1996). Rheological methods in food process engineering (pp. 294–348). East Lansing: Freeman Press.Google Scholar
  63. Steffolani, E. M., Ribotta, P. D., Pérez, G. T., & León, A. E. (2012). Combinations of glucose oxidase, α-amylase and xylanase affect dough properties and bread quality. International Journal of Food Science and Technology, 47(3), 525–534.CrossRefGoogle Scholar
  64. Sulieman, A. M. E., Babiker, W. A. M., Elhardallou, S. B., Elkhalifa, E. A., & Veettil, V. N. (2016). Influence of enrichment of wheat bread withpomegranate (Punica granatum L) peels by-products. International Journal of Food Sciences and Nutrition, 6, 9–13.Google Scholar
  65. Thebaudin, J. Y., Lefebvre, A. C., Harrington, M., & Bourgeois, C. M. (1997). Dietary fibres: nutritional and technological interest. Trends in Food Science and Technology, 8(2), 41–48.CrossRefGoogle Scholar
  66. Tsatsaragkou, K., Kara, T., Ritzoulis, C., Mandala, I., & Rosell, C. M. (2017). Improving carob flour performance for making gluten-free breads by particle size fractionation and jet milling. Food and Bioprocess Technology, 10(5), 831–841.CrossRefGoogle Scholar
  67. Uthayakumaran, S., Newberry, M., Phan-Thien, N., & Tanner, R. (2002). Small and large strain rheology of wheat gluten. Rheologica Acta, 41(1-2), 162–172.CrossRefGoogle Scholar
  68. Van Bockstaele, F., De Leyn, I., Eeckhout, M., & Dewettinck, K. (2008). Rheological properties of wheat flour dough and the relationship with bread volume. I. Creep-recovery measurements. Cereal Chemistry Journal, 85(6), 753–761.CrossRefGoogle Scholar
  69. Vignola, M. B., Moiraghi, M., Salvucci, E., Baroni, V., & Pérez, G. T. (2016). Whole meal and white flour from Argentine wheat genotypes: mineral and arabinoxylan differences. Journal of Cereal Science, 71, 217–223.CrossRefGoogle Scholar
  70. Walker, R., Tseng, A., Cavender, G., Ross, A., & Zhao, Y. (2014). Physicochemical, nutritional, and sensory qualities of wine grape pomace fortified baked goods. Journal of Food Science, 79(9), S1811–S1822.PubMedCrossRefGoogle Scholar
  71. Wang, F. C., & Sun, X. S. (2002). Creep recovery of wheat flour doughs and relationship to other physical dough tests and breadmaking performance. Cereal Chemistry, 79(4), 567–571.CrossRefGoogle Scholar
  72. Wang, J., Rosell, C. M., & Benedito de Barber, C. (2002). Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chemistry, 79(2), 221–226.CrossRefGoogle Scholar
  73. Wang, M., Hamer, R. J., van Vliet, T., Gruppen, H., Marseill, H., & Weegels, P. L. (2003). Effect of water unextractable solids on gluten formation and properties: mechanistic considefans. Journal of Cereal Science, 37(1), 55–64.CrossRefGoogle Scholar
  74. Wu, Y. V., Stringfellow, A. C., & Inglett, G. E. (1994). Protein and β-glucan enriched fractions from high-protein, high β-glucan barleys by sieving and air classifica-tion. Cereal Chemistry, 71, 220–223.Google Scholar
  75. Yu, J., & Ahmedna, M. (2013). Functional components of grape pomace: their composition, biological properties and potential applications. International Journal of Food Science and Technology, 48(2), 221–237.CrossRefGoogle Scholar
  76. Zhu, F., Du, B., Zheng, L., & Li, J. (2015). Advance on the bioactivity and potential applications of dietary fibre from grape pomace. Food Chemistry, 186, 207–221.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Food EngineeringStefan cel Mare UniversitySuceavaRomania
  2. 2.Dizing SRLNeamţRomania
  3. 3.Faculty of Mechanical Engineering, Mechatronic and ManagementŞtefan cel Mare UniversitySuceavaRomania

Personalised recommendations