Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 1, pp 110–121 | Cite as

Cold Plasma Effects on Functional Compounds of Siriguela Juice

  • Lívia M. N. Paixão
  • Thatyane V. FontelesEmail author
  • Valéria S. Oliveira
  • Fabiano A. N. Fernandes
  • Sueli Rodrigues
Original Paper
  • 61 Downloads

Abstract

The effects of glow discharge plasma on siriguela (purple mombin) juice quality were investigated through an experimental design changing the processing time (5–15 min) and the nitrogen gas flow rate (10–30 mL/min). Selected physicochemical properties and bioactive compounds were evaluated pre- and post-processing. No significant changes were found for vitamin C, and the processing did not affect the color of the product. Pigments, total phenolics, antioxidant activity, and B vitamins were increased due to the plasma processing. An increase in antioxidant activity was also observed. Polyphenol oxidase activity showed a decrease of about 20% (20 mL/min of N2/15 min), whereas peroxidase presented a slight activation (6%) in some processing conditions. The plasma processing imparted a positive or an adverse effect on the bioactive compounds in siriguela juice showing the importance of the optimization of food processing by cold plasma for real application. This behavior is related to the time intensity of the treatment, which can promote the extraction of the bioactive compound from the juice pulp followed by degradation at higher times or processing intensity. Due to the low pH of siriguela juice, no microbial contamination was found in the processed juices.

Keywords

Siriguela juice quality Nonthermal processing Glow discharge plasma 

Notes

Funding information

The authors thank CAPES and FUNCAP for the scholarship and CNPq through the National Institute of Tropical Fruits for the financial support.

References

  1. Almeida, F. D. L., Cavalcante, R. S., Cullen, P. J., Frias, J. M., Bourke, P., Fernandes, F. A. N., & Rodrigues, S. (2015). Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innovative Food Science and Emerging Technologies, 32, 127–135.  https://doi.org/10.1016/j.ifset.2015.09.001.CrossRefGoogle Scholar
  2. Augusto, P. E. D., Cristianini, M., & Ibarz, A. (2012). Effect of temperature on dynamic and steady-state shear rheological properties of siriguela (Spondias purpurea L.) pulp. Journal of Food Engineering, 108(2), 283–289.  https://doi.org/10.1016/j.jfoodeng.2011.08.015.CrossRefGoogle Scholar
  3. Bermúdez-Aguirre, D., Wemlinger, E., Pedrow, P., Barbosa-Cánovas, G., & Garcia-Perez, M. (2013). Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce. Food Control, 34(1), 149–157.  https://doi.org/10.1016/j.foodcont.2013.04.022.CrossRefGoogle Scholar
  4. Bian, W., Song, X., Liu, D., Zhang, J., & Chen, X. (2013). Actions of nitrogen plasma in the 4-chrolophenol degradation by pulsed high-voltage discharge with bubbling gas. Chemical Engineering Journal, 219, 385–394.  https://doi.org/10.1016/j.cej.2012.12.074.CrossRefGoogle Scholar
  5. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30.  https://doi.org/10.1016/S0023-6438(95)80008-5.CrossRefGoogle Scholar
  6. Brisset, J.-L., Moussa, D., Doubla, A., Hnatiuc, E., Hnatiuc, B., Youbi, G. K., et al. (2008). Chemical reactivity of discharges and temporal post-discharges in plasma treatment of aqueous media: examples of gliding discharge treated solutions. Industrial and Engineering Chemistry Research, 47(16), 5761–5781.  https://doi.org/10.1021/ie701759y.CrossRefGoogle Scholar
  7. Burdurlu, H. S., Koca, N., & Karadeniz, F. (2006). Degradation of vitamin C in citrus juice concentrates during storage. Journal of Food Engineering, 74(2), 211–216.  https://doi.org/10.1016/j.jfoodeng.2005.03.026.CrossRefGoogle Scholar
  8. Bursać Kovačević, D., Putnik, P., Dragović-Uzelac, V., Pedisić, S., Režek Jambrak, A., & Herceg, Z. (2016). Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry, 190, 317–323.  https://doi.org/10.1016/j.foodchem.2015.05.099.CrossRefPubMedGoogle Scholar
  9. Bußler, S., Steins, V., Ehlbeck, J., & Schlüter, O. (2015). Impact of thermal treatment versus cold atmospheric plasma processing on the techno-functional protein properties from Pisum sativum ‘Salamanca’. Journal of Food Engineering, 167, 166–174.  https://doi.org/10.1016/j.jfoodeng.2015.05.036.CrossRefGoogle Scholar
  10. Cadorin, B. M., Tralli, V. D., Ceriani, E., Benetoli, L. O. d. B., Marotta, E., Ceretta, C., et al. (2015). Treatment of methyl orange by nitrogen non-thermal plasma in a corona reactor: the role of reactive nitrogen species. Journal of Hazardous Materials, 300, 754–764.  https://doi.org/10.1016/j.jhazmat.2015.08.009.CrossRefPubMedGoogle Scholar
  11. Cazzonelli, C. I., & Pogson, B. J. (2010). Source to sink: regulation of carotenoid biosynthesis in plants. Trends in Plant Science, 15(5), 266–274.  https://doi.org/10.1016/j.tplants.2010.02.003.CrossRefPubMedGoogle Scholar
  12. Costa, M. G. M., Fonteles, T. V., de Jesus, A. L. T., Almeida, F. D. L., de Miranda, M. R. A., Fernandes, F. A. N., & Rodrigues, S. (2013a). High-intensity ultrasound processing of pineapple juice. Food and Bioprocess Technology, 6(4), 997–1006.  https://doi.org/10.1007/s11947-011-0746-9.CrossRefGoogle Scholar
  13. Costa, M. G. M., Fonteles, T. V., De Jesus, A. L. T., & Rodrigues, S. (2013b). Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: process optimisation and product stability. Food Chemistry, 139(1–4), 261–266.  https://doi.org/10.1016/j.foodchem.2013.01.059.CrossRefPubMedGoogle Scholar
  14. Dutra, R. L. T., Dantas, A. M., Marques, D. d. A., Batista, J. D. F., Meireles, B. R. L. d. A., de Magalhães Cordeiro, Â. M. T., et al. (2017). Bioaccessibility and antioxidant activity of phenolic compounds in frozen pulps of Brazilian exotic fruits exposed to simulated gastrointestinal conditions. Food Research International, 100(July), 650–657.  https://doi.org/10.1016/j.foodres.2017.07.047.CrossRefPubMedGoogle Scholar
  15. Escarpa, A., & Gonzalez, M. C. (2001). Approach of the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectroscopic methods. Analytica Chimica Acta, 427(1), 119–127.CrossRefGoogle Scholar
  16. Esteban, R., Moran, J. F., Becerril, J. M., & García-Plazaola, J. I. (2015). Versatility of carotenoids: an integrated view on diversity, evolution, functional roles and environmental interactions. Environmental and Experimental Botany, 119, 63–75.  https://doi.org/10.1016/j.envexpbot.2015.04.009.CrossRefGoogle Scholar
  17. Fernandes, F. A. N., Rodrigues, S., Cárcel, J. A., & García-Pérez, J. V. (2015). Ultrasound-assisted air-drying of apple (Malus domestica L.) and its effects on the vitamin of the dried product. Food and Bioprocess Technology, 8(7), 1503–1511.  https://doi.org/10.1007/s11947-015-1519-7.CrossRefGoogle Scholar
  18. Fernandes, F. A. N., Rodrigues, S., García-Pérez, J. V., & Cárcel, J. A. (2016). Effects of ultrasound-assisted air-drying on vitamins and carotenoids of cherry tomatoes. Drying Technology, 34(8), 986–996.  https://doi.org/10.1080/07373937.2015.1090445.CrossRefGoogle Scholar
  19. Folin, O., & Ciocalteu, V. (1927). On tyrosine and tryptophane determinations in proteins. The Journal of Biological Chemistry, 73, 627–650.Google Scholar
  20. Fonteles, T. V., Costa, M. G. M., de Jesus, A. L. T., de Miranda, M. R. A., Fernandes, F. A. N., & Rodrigues, S. (2012). Power ultrasound processing of cantaloupe melon juice: effects on quality parameters. Food Research International, 48(1), 41–48.  https://doi.org/10.1016/j.foodres.2012.02.013.CrossRefGoogle Scholar
  21. Fridovich, I. (1995). Superoxide radical and superoxide dismutases. Annual Review of Biochemistry, 64(1), 97–112.CrossRefGoogle Scholar
  22. Galvão, M. d. S., Narain, N., dos Santos, M. d. S. P., & Nunes, M. L. (2011). Volatile compounds and descriptive odor attributes in umbu (Spondias tuberosa) fruits during maturation. Food Research International, 44(7), 1919–1926.  https://doi.org/10.1016/j.foodres.2011.01.020.CrossRefGoogle Scholar
  23. Garofulić, I. E., Jambrak, A. R., Milošević, S., Dragović-Uzelac, V., & Herceg, Z. (2015). The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasus var. Marasca) juice. LWT - Food Science and Technology, 62(1), 894–900.CrossRefGoogle Scholar
  24. Guo, J., Huang, K., & Wang, J. (2015). Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: a review. Food Control, 50, 482–490.  https://doi.org/10.1016/j.foodcont.2014.09.037.CrossRefGoogle Scholar
  25. Herceg, Z., Kovačević, D. B., Kljusurić, J. G., Jambrak, A. R., Zorić, Z., & Dragović-Uzelac, V. (2016). Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chemistry, 190, 665–672.CrossRefGoogle Scholar
  26. Jedlička, A., & Klimeš, J. (2005). Determination of water- and fat-soluble vitamins in different matrices using high-performance liquid chromatography. Chemical Papers, 59, 202–222.Google Scholar
  27. Laroussi, M., & Leipold, F. (2004). Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry, 233(1-3), 81–86.  https://doi.org/10.1016/j.ijms.2003.11.016.CrossRefGoogle Scholar
  28. Laroussi, M., Mendis, D. A., & Rosenberg, M. (2003). Plasma interaction with microbes. New Journal of Physics, 5, 41.1–41.10.  https://doi.org/10.1088/1367-2630/5/1/341.CrossRefGoogle Scholar
  29. Liu, L., Shao, Z., Zhang, M., & Wang, Q. (2015). Regulation of carotenoid metabolism in tomato. Molecular Plant, 8(1), 28–39.  https://doi.org/10.1016/j.molp.2014.11.006.CrossRefPubMedGoogle Scholar
  30. Ma, R., Wang, G., Tian, Y., Wang, K., Zhang, J., & Fang, J. (2015). Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. Journal of Hazardous Materials, 300, 643–651.  https://doi.org/10.1016/j.jhazmat.2015.07.061.CrossRefPubMedGoogle Scholar
  31. Matsuno, H., & Uritani, I. (1972). Physiological behavior of peroxidase isozymes in sweet potato root tissue injured by cutting or with black rot. Plant and Cell Physiology, 13(6), 1091–1101.Google Scholar
  32. Mendis, D. A., Rosenberg, M., & Azam, F. (2000). A note on the possible electrostatic disruption of bacteria. IEEE Transactions on Plasma Science, 28(4), 1304–1306.CrossRefGoogle Scholar
  33. Mir, S. A., Shah, M. A., & Mir, M. M. (2016). Understanding the role of plasma technology in food industry. Food and Bioprocess Technology, 9(5), 734–750.  https://doi.org/10.1007/s11947-016-1699-9.CrossRefGoogle Scholar
  34. Misra, N. N., Keener, K. M., Bourke, P., Mosnier, J.-P., & Cullen, P. J. (2014). In-package atmospheric pressure cold plasma treatment of cherry tomatoes. Journal of Bioscience and Bioengineering, 118(2), 177–182.  https://doi.org/10.1016/j.jbiosc.2014.02.005.CrossRefPubMedGoogle Scholar
  35. Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science & Technology, 55, 39–47.  https://doi.org/10.1016/j.tifs.2016.07.001.CrossRefGoogle Scholar
  36. Ordóñez-Santos, L. E., Portilla, M. A. O., & Rodríguez, D. X. R. (2013). Cinética de degradación térmica de vitamina C en frutos de guayaba (Psidium guajava L.). Revista Lasallista de Investigación, 10(2), 44–51.Google Scholar
  37. Ordóñez-Santos, L. E., Martínez-Girón, J., & Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry, 233, 96–100.  https://doi.org/10.1016/j.foodchem.2017.04.114.CrossRefPubMedGoogle Scholar
  38. Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278.CrossRefGoogle Scholar
  39. Pankaj, S. K., & Keener, K. M. (2018). Cold plasma processing of fruit juices. In G. Rajauria & B. K. Tiwari (Eds.), Fruit juices (pp. 529–537). Academic.  https://doi.org/10.1016/B978-0-12-802230-6.00026-6.
  40. Pankaj, S. K., Bueno-Ferrer, C., Misra, N. N., Milosavljević, V., O’Donnell, C. P., Bourke, P., et al. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science & Technology, 35(1), 5–17.  https://doi.org/10.1016/j.tifs.2013.10.009.CrossRefGoogle Scholar
  41. Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of cold plasma on food quality: a review. Foods, 7(1), 4.  https://doi.org/10.3390/foods7010004.CrossRefPubMedCentralGoogle Scholar
  42. Pasquali, F., Stratakos, A. C., Koidis, A., Berardinelli, A., Cevoli, C., Ragni, L., Mancusi, R., Manfreda, G., & Trevisani, M. (2016). Atmospheric cold plasma process for vegetable leaf decontamination: a feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control, 60, 552–559.  https://doi.org/10.1016/j.foodcont.2015.08.043.CrossRefGoogle Scholar
  43. Paz, M., Gúllon, P., Barroso, M. F., Carvalho, A. P., Domingues, V. F., Gomes, A. M., Becker, H., Longhinotti, E., & Delerue-Matos, C. (2015). Brazilian fruit pulps as functional foods and additives: evaluation of bioactive compounds. Food Chemistry, 172, 462–468.  https://doi.org/10.1016/j.foodchem.2014.09.102.CrossRefPubMedGoogle Scholar
  44. Pérez-Jiménez, J., Arranz, S., Tabernero, M., Díaz- Rubio, M. E., Serrano, J., Goñi, I., & Saura-Calixto, F. (2008). Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: extraction, measurement and expression of results. Food Research International, 41(3), 274–285.  https://doi.org/10.1016/j.foodres.2007.12.004.CrossRefGoogle Scholar
  45. Ramazzina, I., Berardinelli, A., Rizzi, F., Tappi, S., Ragni, L., Sacchetti, G., & Rocculi, P. (2015). Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biology and Technology, 107, 55–65.  https://doi.org/10.1016/j.postharvbio.2015.04.008.CrossRefGoogle Scholar
  46. Rawson, A., Patras, A., Tiwari, B. K., Noci, F., Koutchma, T., & Brunton, N. (2011). Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: review of recent advances. Food Research International, 44(7), 1875–1887.  https://doi.org/10.1016/j.foodres.2011.02.053.CrossRefGoogle Scholar
  47. Rizzolo, A., & Polesello, S. (1992). Review Chromatographic determination of vitamins in foods. Journal of Chromatography, 624, 103.CrossRefGoogle Scholar
  48. Rodríguez, Ó., Gomes, W. F., Rodrigues, S., & Fernandes, F. A. N. (2017). Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.). LWT - Food Science and Technology, 84, 457–463.  https://doi.org/10.1016/j.lwt.2017.06.010.CrossRefGoogle Scholar
  49. Rufino, M. D. S. M., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002.  https://doi.org/10.1016/j.foodchem.2010.01.037.CrossRefGoogle Scholar
  50. Sánchez-Moreno, C., Plaza, L., Elez-Martínez, P., De Ancos, B., Martín-Belloso, O., & Cano, M. P. (2005). Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. Journal of Agricultural and Food Chemistry, 53(11), 4403–4409.  https://doi.org/10.1021/jf048839b.CrossRefPubMedGoogle Scholar
  51. Sarangapani, C., O’Toole, G., Cullen, P. J., & Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science and Emerging Technologies, 44, 235–241.  https://doi.org/10.1016/j.ifset.2017.02.012.CrossRefGoogle Scholar
  52. Segat, A., Misra, N. N., Cullen, P. J., & Innocente, N. (2015). Atmospheric pressure cold plasma (ACP) treatment of whey protein isolate model solution. Innovative Food Science & Emerging Technologies, 29, 247–254.  https://doi.org/10.1016/j.ifset.2015.03.014.CrossRefGoogle Scholar
  53. Shen, Y., Lei, L., Zhang, X., Zhou, M., & Zhang, Y. (2008). Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges. Journal of Hazardous Materials, 150(3), 713–722.  https://doi.org/10.1016/j.jhazmat.2007.05.024.CrossRefPubMedGoogle Scholar
  54. Shi, X.-M., Zhang, G.-J., Wu, X.-L., Li, Y.-X., Ma, Y., & Shao, X.-J. (2011). Effect of low-temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice. IEEE Transactions on Plasma Science, 39(7), 1591–1597.CrossRefGoogle Scholar
  55. Solorzano-Morán, S., Alia-tejacal, I., Rivera-Cabrera, F., López-Martínez, V., Pérez-Flores, L. J., Pelayo-Zaldívar, C., et al. (2015). Quality attributes and functional compounds of mexican plum (Spondias purpurea L.) fruit ecotypes. Fruits, 70(5), 261–270.CrossRefGoogle Scholar
  56. Spencer, J. P. E., El Mohsen, M. M. A., Minihane, A., & Mathers, J. C. (2008). Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. British Journal of Nutrition, 99(01), 12–22.  https://doi.org/10.1017/S0007114507798938.CrossRefPubMedGoogle Scholar
  57. Surowsky, B., Fischer, A., Schlueter, O., & Knorr, D. (2013). Cold plasma effects on enzyme activity in a model food system. Innovative Food Science & Emerging Technologies, 19, 146–152.CrossRefGoogle Scholar
  58. Tappi, S., Berardinelli, A., Ragni, L., Dalla Rosa, M., Guarnieri, A., & Rocculi, P. (2014). Atmospheric gas plasma treatment of fresh-cut apples. Innovative Food Science & Emerging Technologies, 21, 114–122.  https://doi.org/10.1016/j.ifset.2013.09.012.CrossRefGoogle Scholar
  59. Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L., & Rocculi, P. (2016). Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science and Emerging Technologies, 33, 225–233.  https://doi.org/10.1016/j.ifset.2015.12.022.
  60. Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: a novel non-thermal technology for food processing. Food Biophysics, 10(1), 1–11.  https://doi.org/10.1007/s11483-014-9382-z.CrossRefGoogle Scholar
  61. Tomadoni, B., Cassani, L., Viacava, G., Moreira, M. D. R., & Ponce, A. (2017). Effect of ultrasound and storage time on quality attributes of strawberry juice. Journal of Food Process Engineering, 40(5), 1–8.  https://doi.org/10.1111/jfpe.12533.CrossRefGoogle Scholar
  62. Traylor, M. J., Pavlovich, M. J., Karim, S., Hait, P., Sakiyama, Y., Clark, D. S., & Graves, D. B. (2011). Long-term antibacterial efficacy of air plasma-activated water. Journal of Physics D: Applied Physics, 44(47), 1–4.  https://doi.org/10.1088/0022-3727/44/47/472001.CrossRefGoogle Scholar
  63. Wissemann, K. W., & Lee, C. Y. (1980). Polyphenoloxidase activity during grape maturation and wine production. American Journal of Enology and Viticulture, 31, 206–211.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lívia M. N. Paixão
    • 1
  • Thatyane V. Fonteles
    • 1
    Email author
  • Valéria S. Oliveira
    • 2
  • Fabiano A. N. Fernandes
    • 2
  • Sueli Rodrigues
    • 1
  1. 1.Departamento de Engenharia de Alimentos (DEAL)Universidade Federal do CearáFortalezaBrazil
  2. 2.Departamento de Engenharia Química (DEQ)Universidade Federal do CearáFortalezaBrazil

Personalised recommendations