Food and Bioprocess Technology

, Volume 12, Issue 1, pp 98–109 | Cite as

Effect of High Hydrostatic Pressure (HHP) on the Antioxidant and Volatile Properties of Candied Wumei Fruit (Prunus mume) During Osmotic Dehydration

  • Wei Luo
  • Silvia Tappi
  • Chunfang Wang
  • Yong Yu
  • Songming ZhuEmail author
  • Marco Dalla Rosa
  • Pietro Rocculi
Original Paper


Candied wumei fruit (Prunus mume) is a traditional product in Eastern Asian countries generally obtained by a long osmotic dehydration (OD) process. This study evaluated the effect of the application of high hydrostatic pressure (HHP) and heating pre-treatments to accelerate the OD process on some bioactive compound content, antioxidant activity, and volatile profile of wumei fruit. Whole fruits were subjected to HPP treatment (50 MPa for 1 min) and heating (100 °C for 1 min) and then to OD in a 40% sucrose solution for 5 days. Results showed that both heating and HPP pre-treatment increased mass transfer in a comparable way; however, HPP allowed a significant higher retention of antioxidant compounds and activity compared with the heating treatment, resulting in similar values to the untreated product. Moreover, HPP promoted the release of various volatile components resulting in a richer volatile profile compared with both control and heat-treated samples. Hence, HPP showed good potentiality as an alternative non-thermal pre-treatment for the production of candied wumei fruit characterized by high nutritional and sensorial properties.


Prunus mume Antioxidant Volatile High hydrostatic pressure Heating Osmotic dehydration 



The authors would like to thank the Erasmus+ program for the cooperation between the two universities.

Funding Information

This work was supported by the Key Program of Natural Science Foundation of Zhejiang Province (Grant No. LZ14C200002). The authors Pietro Rocculi and Silvia Tappi would like to acknowledge the INNOFRUVE project (Grant number (CUP): J12F16000020009), co-funded by the Emilia-Romagna Region through the POR FESR 2014-2020 funds (European Regional Development Fund).


  1. Aguilera, Y., Martin-Cabrejas, M. A., & de Mejia, E. G. (2016). Phenolic compounds in fruits and beverages consumed as part of the Mediterranean diet: their role in prevention of chronic diseases. Phytochemistry Reviews, 15(3), 405–423.CrossRefGoogle Scholar
  2. Ahmed, M., & Eun, J.-B. (2017). Flavonoids in fruits and vegetables after thermal and nonthermal processing: a review. Critical Reviews in Food Science and Nutrition, 1–30.Google Scholar
  3. An, K., Wu, J., Tang, D., Wen, J., Fu, M., Xiao, G., & Xu, Y. (2018). Effect of carbonic maceration (CM) on mass transfer characteristics and quality attributes of Sanhua plum (Prunus salicina Lindl.). LWT-Food Science and Technology, 87, 537–545.CrossRefGoogle Scholar
  4. Arion, C. M., Tabart, J., Kevers, C., Niculaua, M., Filimon, R., Beceanu, D., & Dommes, J. (2014). Antioxidant potential of different plum cultivars during storage. Food Chemistry, 146, 485–491.CrossRefGoogle Scholar
  5. Boff, J., Truong, T., Min, D., & Shellhammer, T. (2003). Effect of thermal processing and carbon dioxide-assisted high-pressure processing on pectinmethylesterase and chemical changes in orange juice. Journal of Food Science, 68(4), 1179–1184.CrossRefGoogle Scholar
  6. Bolarinwa, I. F., Orfila, C., & Morgan, M. R. (2014). Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chemistry, 152, 133–139.PubMedCrossRefGoogle Scholar
  7. Bouayed, J., Hoffmann, L., & Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: bioaccessibility and potential uptake. Food Chemistry, 128(1), 14–21.PubMedCrossRefGoogle Scholar
  8. Cabrera, S. G., & Moon, K.-D. (2015). Effects of processing treatments on the bioactive compounds of Campbell grape juice. Asia Pacific Journal of Multidisciplinary Research, 3(4).Google Scholar
  9. Chandra, S., & Kumari, D. (2015). Recent development in osmotic dehydration of fruit and vegetables: a review. Critical Reviews in Food Science and Nutrition, 55(4), 552–561.PubMedCrossRefGoogle Scholar
  10. Chen, X., Qin, W., Ma, L., Xu, F., Jin, P., & Zheng, Y. (2015). Effect of high pressure processing and thermal treatment on physicochemical parameters, antioxidant activity and volatile compounds of green asparagus juice. LWT-Food Science and Technology, 62(1), 927–933.CrossRefGoogle Scholar
  11. Chen, Z.-Y., Lin, Y.-S., Liu, X.-M., Cheng, J.-R., & Yang, C.-Y. (2017). Chemical composition and antioxidant activities of five samples of Prunus mume Umezu from different factories in south and East China. Journal of Food Quality, 2017, 1–7.Google Scholar
  12. Chiralt, A., & Talens, P. (2005). Physical and chemical changes induced by osmotic dehydration in plant tissues. Journal of Food Engineering, 67(1–2), 167–177.CrossRefGoogle Scholar
  13. Corrales, M., Toepfl, S., Butz, P., Knorr, D., & Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innovative Food Science & Emerging Technologies, 9(1), 85–91.CrossRefGoogle Scholar
  14. Corrêa, J. L., Pereira, L. M., Vieira, G. S., & Hubinger, M. D. (2010). Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. Journal of Food Engineering, 96(4), 498–504.CrossRefGoogle Scholar
  15. Crelier, S., Robert, M., & Juillerat, M. (1999). Effect of a high pressure treatment on the texture and enzyme activities of selected vegetables. In Advances in high pressure bioscience and biotechnology (pp. 413–416). Springer.Google Scholar
  16. Díaz-Mula, H., Martínez-Romero, D., Castillo, S., Serrano, M., & Valero, D. (2011). Modified atmosphere packaging of yellow and purple plum cultivars. 1. Effect on organoleptic quality. Postharvest Biology and Technology, 61(2–3), 103–109.CrossRefGoogle Scholar
  17. Du, G., Li, M., Ma, F., & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113(2), 557–562.CrossRefGoogle Scholar
  18. Gao, Z.-H., Shen, Z.-J., Han, Z.-H., Fang, J.-G., Zhang, Y.-M., & Zhang, Z. (2004). Microsatellite markers and genetic diversity in Japanese apricot (Prunus mume). Hortscience, 39(7), 1571–1574.Google Scholar
  19. Gil, M. I., Tomás-Barberán, F. A., Hess-Pierce, B., & Kader, A. A. (2002). Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. Journal of Agricultural and food Chemistry, 50(17), 4976–4982.PubMedCrossRefGoogle Scholar
  20. Gokbulut, I., & Karabulut, I. (2012). SPME–GC–MS detection of volatile compounds in apricot varieties. Food Chemistry, 132(2), 1098–1102.CrossRefGoogle Scholar
  21. He, Z., Tao, Y., Zeng, M., Zhang, S., Tao, G., Qin, F., & Chen, J. (2016). High pressure homogenization processing, thermal treatment and milk matrix affect in vitro bioaccessibility of phenolics in apple, grape and orange juice to different extents. Food Chemistry, 200, 107–116.PubMedCrossRefGoogle Scholar
  22. Hendrickx, M., Ludikhuyze, L., Van den Broeck, I., & Weemaes, C. (1998). Effects of high pressure on enzymes related to food quality. Trends in Food Science & Technology, 9(5), 197–203.CrossRefGoogle Scholar
  23. Jung, B. G., Cho, S. J., Koh, H. B., Han, D. U., & Lee, B. J. (2010). Fermented Maesil (Prunus mume) with probiotics inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. Veterinary Dermatology, 21(2), 184–191.PubMedCrossRefGoogle Scholar
  24. Keenan, D. F., Brunton, N. P., Gormley, T. R., Butler, F., Tiwari, B. K., & Patras, A. (2010). Effect of thermal and high hydrostatic pressure processing on antioxidant activity and colour of fruit smoothies. Innovative Food Science & Emerging Technologies, 11(4), 551–556.CrossRefGoogle Scholar
  25. Miyazawa, M., Yamada, T., & Utsunomiya, H. (2003). Suppressive effect of the SOS-inducing activity of chemical mutagen by citric acid esters from Prunus mume Sieb. et Zucc. Using the Salmonella typhimurium TA1535/PSK1002 UMU test. Natural Product Research, 17(5), 319–323.PubMedCrossRefGoogle Scholar
  26. Miyazawa, M., Shirakawa, N., Utsunomiya, H., Inada, K.-i., & Yamada, T. (2009). Comparison of the volatile components of unripe and ripe Japanese apricot (Prunus mume Sieb. Et Zucc.). Natural Product Research, 23(17), 1567–1571.PubMedCrossRefGoogle Scholar
  27. Nayak, B., Liu, R. H., & Tang, J. (2015). Effect of processing on phenolic antioxidants of fruits, vegetables, and grains—a review. Critical Reviews in Food Science and Nutrition, 55(7), 887–918.PubMedCrossRefGoogle Scholar
  28. Nijveldt, R. J., Van Nood, E., Van Hoorn, D. E., Boelens, P. G., Van Norren, K., & Van Leeuwen, P. A. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. The American Journal of Clinical Nutrition, 74(4), 418–425.PubMedCrossRefGoogle Scholar
  29. Nowacka, M., Tylewicz, U., Laghi, L., Dalla Rosa, M., & Witrowa-Rajchert, D. (2014). Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chemistry, 144, 18–25.PubMedCrossRefGoogle Scholar
  30. Nunes, C., Coimbra, M. A., Saraiva, J., & Rocha, S. M. (2008). Study of the volatile components of a candied plum and estimation of their contribution to the aroma. Food Chemistry, 111(4), 897–905.CrossRefGoogle Scholar
  31. Nuñez-Mancilla, Y., Perez-Won, M., Vega-Gálvez, A., Arias, V., Tabilo-Munizaga, G., Briones-Labarca, V., Lemus-Mondaca, R., & Di Scala, K. (2011). Modeling mass transfer during osmotic dehydration of strawberries under high hydrostatic pressure conditions. Innovative Food Science & Emerging Technologies, 12(3), 338–343.CrossRefGoogle Scholar
  32. Núñez-Mancilla, Y., Vega-Gálvez, A., Pérez-Won, M., Zura, L., García-Segovia, P., & Di Scala, K. (2014). Effect of osmotic dehydration under high hydrostatic pressure on microstructure, functional properties and bioactive compounds of strawberry (Fragaria Vesca). Food and Bioprocess Technology, 7(2), 516–524.CrossRefGoogle Scholar
  33. Pacheco-Palencia, L. A., Duncan, C. E., & Talcott, S. T. (2009). Phytochemical composition and thermal stability of two commercial açai species, Euterpe oleracea and Euterpe precatoria. Food Chemistry, 115(4), 1199–1205.CrossRefGoogle Scholar
  34. Panyoyai, N., Bannikova, A., Small, D. M., & Kasapis, S. (2016). Diffusion kinetics of ascorbic acid in a glassy matrix of high-methoxy pectin with polydextrose. Food Hydrocolloids, 53, 293–302.CrossRefGoogle Scholar
  35. Patras, A., Brunton, N. P., Da Pieve, S., & Butler, F. (2009). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Science & Emerging Technologies, 10(3), 308–313.CrossRefGoogle Scholar
  36. Polydera, A., Stoforos, N., & Taoukis, P. (2003). Comparative shelf life study and vitamin C loss kinetics in pasteurised and high pressure processed reconstituted orange juice. Journal of Food Engineering, 60(1), 21–29.CrossRefGoogle Scholar
  37. Qiao, L., Sun, Y., Chen, R., Fu, Y., Zhang, W., Li, X., Chen, J., Shen, Y., & Ye, X. (2014). Sonochemical effects on 14 flavonoids common in citrus: Relation to stability. PLoS One, 9(2), e87766.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Rahman, N., Xin, T. B., Kamilah, H., & Ariffin, F. (2018). Effects of osmotic dehydration treatment on volatile compound (Myristicin) content and antioxidants property of nutmeg (Myristica fragrans) pericarp. Journal of Food Science and Technology, 1–7.Google Scholar
  39. Rastogi, N., & Niranjan, K. (1998). Enhanced mass transfer during osmotic dehydration of high pressure treated pineapple. Journal of Food Science, 63(3), 508–511.CrossRefGoogle Scholar
  40. Santhirasegaram, V., Razali, Z., George, D. S., & Somasundram, C. (2015). Comparison of UV-C treatment and thermal pasteurization on quality of Chokanan mango (Mangifera indica L.) juice. Food and Bioproducts Processing, 94, 313–321.CrossRefGoogle Scholar
  41. Shirasaka, N., Takasaki, R., & Yoshizumi, H. (2005). Changes in lyoniresinol content and antioxidative activity of pickled ume [Prunus mume fruit] during the seasoning process. Journal of the Japanese Society for Food Science and Technology (Japan).Google Scholar
  42. Souraki, B. A., Tondro, H., & Ghavami, M. (2015). Simulation of osmotic dehydration of a spherical material using parabolic and power-law approximation methods. Chemical Engineering Communications, 202(12), 1607–1617.CrossRefGoogle Scholar
  43. Taiwo, K. A., Angersbach, A., Ade-Omowaye, B. I., & Knorr, D. (2001). Effects of pretreatments on the diffusion kinetics and some quality parameters of osmotically dehydrated apple slices. Journal of Agricultural and Food Chemistry, 49(6), 2804–2811.PubMedCrossRefGoogle Scholar
  44. Turturică, M., Stănciuc, N., Bahrim, G., & Râpeanu, G. (2016). Effect of thermal treatment on phenolic compounds from plum (prunus domestica) extracts—a kinetic study. Journal of Food Engineering, 171, 200–207.CrossRefGoogle Scholar
  45. Vangdal, E., Picchi, V., Fibiani, M., & Scalzo, R. L. (2017). Effects of the drying technique on the retention of phytochemicals in conventional and organic plums (Prunus domestica L.). LWT-Food Science and Technology, 85, 506–509.CrossRefGoogle Scholar
  46. Verma, D., Kaushik, N., & Rao, P. S. (2014). Application of high hydrostatic pressure as a pretreatment for osmotic dehydration of banana slices (Musa cavendishii) finish-dried by dehumidified air drying. Food and Bioprocess Technology, 7(5), 1281–1297.CrossRefGoogle Scholar
  47. Wang, Y., Yang, C., Li, S., Yang, L., Wang, Y., Zhao, J., & Jiang, Q. (2009). Volatile characteristics of 50 peaches and nectarines evaluated by HP–SPME with GC–MS. Food Chemistry, 116(1), 356–364.CrossRefGoogle Scholar
  48. Wang, F., Du, B.-L., Cui, Z.-W., Xu, L.-P., & Li, C.-Y. (2017). Effects of high hydrostatic pressure and thermal processing on bioactive compounds, antioxidant activity, and volatile profile of mulberry juice. Food Science and Technology International, 23(2), 119–127.PubMedCrossRefGoogle Scholar
  49. Wills, R., Pristijono, P., & Golding, J. (2015). Nitric oxide and postharvest stress of fruits, vegetables and ornamentals. In Nitric oxide action in abiotic stress responses in plants (pp. 221–238). Springer.Google Scholar
  50. Yadav, A. K., & Singh, S. V. (2014). Osmotic dehydration of fruits and vegetables: a review. Journal of Food Science and Technology, 51(9), 1654–1673.PubMedCrossRefGoogle Scholar
  51. Yan, X.-T., Li, W., Sun, Y.-N., Yang, S.-Y., Lee, S.-H., Chen, J.-B., Jang, H.-D., & Kim, Y.-H. (2014). Identification and biological evaluation of flavonoids from the fruits of Prunus mume. Bioorganic & Medicinal Chemistry Letters, 24(5), 1397–1402.CrossRefGoogle Scholar
  52. Yeom, H. W., Streaker, C. B., Zhang, Q. H., & Min, D. B. (2000). Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. Journal of Agricultural and Food Chemistry, 48(10), 4597–4605.PubMedCrossRefGoogle Scholar
  53. Yi, J., Yi, J., Dong, P., Liao, X., Hu, X., & Zhang, Y. (2015). Effect of high-hydrostatic-pressure on molecular microstructure of mushroom (Agaricusbisporus) polyphenoloxidase. LWT-Food Science and Technology, 60(2), 890–898.CrossRefGoogle Scholar
  54. Zhao, J. H., Liu, F., Pang, X. L., Xiao, H. W., Wen, X., & Ni, Y. Y. (2016). Effects of different osmo-dehydrofreezing treatments on the volatile compounds, phenolic compounds and physicochemical properties in mango (Mangifera indica L.). International Journal of Food Science & Technology, 51(6), 1441–1448.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Agricultural and Food SciencesAlma Mater Studiorum, University of BolognaCesenaItaly
  2. 2.Interdepartmental Centre for Agri-Food Industrial ResearchAlma Mater Studiorum, University of BolognaCesenaItaly
  3. 3.College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina

Personalised recommendations