Food and Bioprocess Technology

, Volume 12, Issue 1, pp 122–146 | Cite as

Process Analysis of Mulberry (Morus alba) Leaf Extract Encapsulation: Effects of Spray Drying Conditions on Bioactive Encapsulated Powder Quality

  • William Tchabo
  • Yongkun MaEmail author
  • Giscard Kuate Kaptso
  • Emmanuel Kwaw
  • Rosine Wafo Cheno
  • Lulu Xiao
  • Richard Osae
  • Meng Wu
  • Muhammad Farooq
Original Paper


A 32 full-factorial design coupled with three-way ANOVA and Pearson correlation was employed for the process analysis of spray drying encapsulation of mulberry leaf extract. The statistical outcomes obtained were reliable and efficient in investigating the effect of inlet temperature, carrier material type, and carrier concentration on the physicochemical properties of encapsulated biocompound powders. The biocompound retention and entrapment efficiency were found to be chiefly dependent on the carrier type. Moreover, the carrier concentration and inlet temperature significantly (p < 0.05) altered the physical properties of the encapsulated biocompound powders irrespective of the type of carrier used. Furthermore, the antiradical activities were found to be associated with the biocompound profile. The optimum spray drying encapsulating conditions were determined to be 140 °C/0.75% sodium carboxymethyl cellulose and 137 °C/12% maltodextrin. Therefore, the encapsulated biocompound powder produced with sodium carboxymethyl cellulose was characterized by its flavonol content (209.10 mg/g), gamma-aminobutyric acid content (3.31 mg/g), cupric ion reducing capacity (43.17 mM/g of Trolox), ferric reducing antioxidant power capacity (182.03 mM/g of Trolox), powder recovery (61.85%), particle density (1.75 g/cm3), bulk density (0.35 g/cm3), tapped density (0.46 g/cm3), wettability time (49.40 s), hygroscopicity (18.48%), glass transition temperature (114.35 °C), and greenness (− 4.90). The encapsulated biocompound powder produced with maltodextrin was typified by its phenolic acid content (79.22 mg/g), 1-deoxynojirimycin content (13.61 mg/g), 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (25.37 mM/g of Trolox), 1,1-diphenyl-2-picrylhydrazyl (74.81 mM/g of Trolox), particle size (2.24 μm), Hausner ratio (1.06), Carr index (5.48%), porosity (56.47%), water solubility index (97.15%), moisture content (2.75%), and water activity (0.15).


Spray drying Mulberry leaf Encapsulation Sodium carboxymethyl cellulose Maltodextrin 



Sodium carboxymethyl cellulose




Chlorogenic acid


Caffeic acid








Kaempferol 3-(6-rhamnosylglucoside)


Quercetin 3-(6-malonylglucoside)




Kaempferol 3-(6-malonylglucoside)




Gamma-aminobutyric acid


2,2-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)


Cupric ion reducing capacity




Ferric reducing antioxidant power capacity


Antiradical activities


Biocompound extract


Encapsulated biocompound powder


Biocompound retention


Powder recovery


Particle size


Particle density


Bulk density


Tapped density


Hausner ratio


Carr index




Water solubility index


Wettability time


Moisture content




Glass transition temperature


Water activity











Carrier material type


Carrier concentration


Inlet temperature


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Akbas, E., Kilercioglu, M., Onder, O. N., Koker, A., Soyler, B., & Oztop, M. H. (2017). Wheatgrass juice to wheat grass powder: encapsulation, physical and chemical characterization. Journal of Functional Foods, 28, 19–27.CrossRefGoogle Scholar
  2. Apak, R., Güçlü, K., Özyürek, M., Esin Karademir, S., & Erçağ, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International Journal of Food Sciences and Nutrition, 57(5–6), 292–304.CrossRefGoogle Scholar
  3. Berker, K. I., Güçlü, K., Demirata, B., & Apak, R. (2010). A novel antioxidant assay of ferric reducing capacity measurement using ferrozine as the colour forming complexation reagent. Analytical Methods, 2(11), 1770–1778.CrossRefGoogle Scholar
  4. Bhusari, S., Muzaffar, K., & Kumar, P. (2014). Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technology, 266, 354–364.CrossRefGoogle Scholar
  5. Caliskan, G., & Dirim, S. N. (2016). The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technology, 287, 308–314.CrossRefGoogle Scholar
  6. Celli, G. B., Ghanem, A., & Brooks, M. S.-L. (2015). Bioactive encapsulated powders for functional foods—a review of methods and current limitations. Food and Bioprocess Technology, 8(9), 1825–1837.CrossRefGoogle Scholar
  7. Celli, G. B., Dibazar, R., Ghanem, A., & Brooks, M. S.-L. (2016). Degradation kinetics of anthocyanins in freeze-dried microencapsulates from lowbush blueberries (Vaccinium angustifolium Aiton) and prediction of shelf-life. Drying Technology, 34(10), 1175–1184.CrossRefGoogle Scholar
  8. Chandralekha, A., Rani, A., Tavanandi, H. A., Amrutha, N., Hebbar, U., & Raghavarao, K. (2017). Role of carrier material in encapsulation of yeast (Saccharomyces cerevisiae) by spray drying. Drying Technology, 35(8), 1029–1042.CrossRefGoogle Scholar
  9. Da Rosa, C. G., Borges, C. D., Zambiazi, R. C., Nunes, M. R., Benvenutti, E. V., da Luz, S. R., et al. (2013). Microencapsulation of gallic acid in chitosan, β-cyclodextrin and xanthan. Industrial Crops and Products, 46, 138–146.CrossRefGoogle Scholar
  10. Daza, L. D., Fujita, A., Fávaro-Trindade, C. S., Rodrigues-Ract, J. N., Granato, D., & Genovese, M. I. (2016). Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing, 97, 20–29.CrossRefGoogle Scholar
  11. De Barros Fernandes, R. V., Borges, S. V., & Botrel, D. A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers, 101, 524–532.CrossRefGoogle Scholar
  12. De Souza, V. B., Fujita, A., Thomazini, M., da Silva, E. R., Lucon Jr., J. F., Genovese, M. I., et al. (2014). Functional properties and stability of spray-dried pigments from Bordo grape (Vitis labrusca) winemaking pomace. Food Chemistry, 164, 380–386.CrossRefGoogle Scholar
  13. Derrien, M., Badr, A., Gosselin, A., Desjardins, Y., & Angers, P. (2017). Optimization of a green process for the extraction of lutein and chlorophyll from spinach by-products using response surface methodology (RSM). LWT-Food Science and Technology, 79, 170–177.CrossRefGoogle Scholar
  14. Dias, M. I., Ferreira, I. C., & Barreiro, M. F. (2015). Microencapsulation of bioactives for food applications. Food & Function, 6(4), 1035–1052.CrossRefGoogle Scholar
  15. Du, J., Ge, Z.-Z., Xu, Z., Zou, B., Zhang, Y., & Li, C.-M. (2014). Comparison of the efficiency of five different drying carriers on the spray drying of persimmon pulp powders. Drying Technology, 32(10), 1157–1166.CrossRefGoogle Scholar
  16. Fazaeli, M., Emam-Djomeh, Z., Ashtari, A. K., & Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90(4), 667–675.CrossRefGoogle Scholar
  17. Felix, P. H. C., Birchal, V. S., Botrel, D. A., Marques, G. R., & Borges, S. V. (2017). Physicochemical and thermal stability of microcapsules of cinnamon essential oil by spray drying. Journal of Food Processing and Preservation, 41(3).Google Scholar
  18. Fernandes, R. V. d. B., Borges, S. V., Botrel, D. A., & Oliveira, C. R. d. (2014). Physical and chemical properties of encapsulated rosemary essential oil by spray drying using whey protein–inulin blends as carriers. International Journal of Food Science & Technology, 49(6), 1522–1529.CrossRefGoogle Scholar
  19. Fernandes, R. V. d. B., Botrel, D. A., Silva, E. K., Pereira, C. G., Carmo, E. L. d., Dessimoni, A. L. d. A., & Borges, S. V. (2017). Microencapsulated ginger oil properties: influence of operating parameters. Drying Technology, 35(9), 1098–1107.CrossRefGoogle Scholar
  20. Ferrari, C. C., Germer, S. P. M., & de Aguirre, J. M. (2012). Effects of spray-drying conditions on the physicochemical properties of blackberry powder. Drying Technology, 30(2), 154–163.CrossRefGoogle Scholar
  21. Fitzpatrick, J. J., & Ahrné, L. (2005). Food powder handling and processing: industry problems, knowledge barriers and research opportunities. Chemical Engineering and Processing: Process Intensification, 44(2), 209–214.CrossRefGoogle Scholar
  22. Garofulić, I. E., Zorić, Z., Pedisić, S., & Dragović-Uzelac, V. (2017). Retention of polyphenols in encapsulated sour cherry juice in dependence of drying temperature and wall material. LWT-Food Science and Technology, 83, 110–117.CrossRefGoogle Scholar
  23. González-Centeno, M. R., Knoerzer, K., Sabarez, H., Simal, S., Rosselló, C., & Femenia, A. (2014). Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.)—a response surface approach. Ultrasonics Sonochemistry, 21(6), 2176–2184.CrossRefGoogle Scholar
  24. Grabowski, J., Truong, V. D., & Daubert, C. (2006). Spray-drying of amylase hydrolyzed sweet potato puree and physicochemical properties of powder. Journal of Food Science, 71(5), E209–E217.CrossRefGoogle Scholar
  25. Gryn Rynko, A., Bazylak, G., & Olszewska-Slonina, D. (2016). New potential phytotherapeutics obtained from white mulberry (Morus alba L.) leaves. Biomedicine & Pharmacotherapy, 84, 628–636.CrossRefGoogle Scholar
  26. Idham, Z., Muhamad, I. I., & Sarmidi, M. R. (2012). Degradation kinetics and color stability of spray-dried encapsulated anthocyanins from Hibiscus sabdariffa L. Journal of Food Process Engineering, 35(4), 522–542.CrossRefGoogle Scholar
  27. Jafari, S. M., Ghalenoei, M. G., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology, 311, 59–65.CrossRefGoogle Scholar
  28. Karasakal, A. (2015). Evaluation of antioxidant activities of Brassica napus’s seeds by CUPRAC, ABTS/persulphate and DMPD methods.Google Scholar
  29. Koca, N., Erbay, Z., & Kaymak-Ertekin, F. (2015). Effects of spray-drying conditions on the chemical, physical, and sensory properties of cheese powder. Journal of Dairy Science, 98(5), 2934–2943.CrossRefGoogle Scholar
  30. Krishnaswamy, K., Orsat, V., Gariépy, Y., & Thangavel, K. (2013). Optimization of microwave-assisted extraction of phenolic antioxidants from grape seeds (Vitis vinifera). Food and Bioprocess Technology, 6(2), 441–455.CrossRefGoogle Scholar
  31. Kuck, L. S., & Noreña, C. P. Z. (2016). Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chemistry, 194, 569–576.CrossRefGoogle Scholar
  32. Labuschagne, P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: a review. Food Research International, 107, 227–247.CrossRefGoogle Scholar
  33. Li, B., Konecke, S., Harich, K., Wegiel, L., Taylor, L. S., & Edgar, K. J. (2013). Solid dispersion of quercetin in cellulose derivative matrices influences both solubility and stability. Carbohydrate Polymers, 92(2), 2033–2040.CrossRefGoogle Scholar
  34. Lopez, C. G., Rogers, S. E., Colby, R. H., Graham, P., & Cabral, J. T. (2015). Structure of sodium carboxymethyl cellulose aqueous solutions: a SANS and rheology study. Journal of Polymer Science Part B: Polymer Physics, 53(7), 492–501. Scholar
  35. Medina-Torres, L., Santiago-Adame, R., Calderas, F., Gallegos-Infante, J., González-Laredo, R., Rocha-Guzmán, N., et al. (2016). Microencapsulation by spray drying of laurel infusions (Litsea glaucescens) with maltodextrin. Industrial Crops and Products, 90, 1–8.CrossRefGoogle Scholar
  36. Moreira, G. E. G., Costa, M. G. M., de Souza, A. C. R., de Brito, E. S., de Medeiros, M. d. F. D., & de Azeredo, H. M. (2009). Physical properties of spray dried acerola pomace extract as affected by temperature and drying aids. LWT-Food Science and Technology, 42(2), 641–645.CrossRefGoogle Scholar
  37. Nadeem, H. Ş., Torun, M., & Özdemir, F. (2011). Spray drying of the mountain tea (Sideritis stricta) water extract by using different hydrocolloid carriers. LWT-Food Science and Technology, 44(7), 1626–1635.CrossRefGoogle Scholar
  38. Negrão-Murakami, A. N., Nunes, G. L., Pinto, S. S., Murakami, F. S., Amante, E. R., Petrus, J. C. C., Prudêncio, E. S., & Amboni, R. D. M. C. (2017). Influence of DE-value of maltodextrin on the physicochemical properties, antioxidant activity, and storage stability of spray dried concentrated mate (Ilex paraguariensis A. St. Hil.). LWT - Food Science and Technology, 79, 561–567.CrossRefGoogle Scholar
  39. Ogrodowska, D., Tańska, M., & Brandt, W. (2017). The influence of drying process conditions on the physical properties, bioactive compounds and stability of encapsulated pumpkin seed oil. Food and Bioprocess Technology, 10(7), 1265–1280.CrossRefGoogle Scholar
  40. Oliveira, É. R., Fernandes, R. V., Botrel, D. A., Carmo, E. L., Borges, S. V., & Queiroz, F. (2018). Study of different wall matrix biopolymers on the properties of spray-dried pequi oil and on the stability of bioactive compounds. Food and Bioprocess Technology, 11(3), 660–679.CrossRefGoogle Scholar
  41. Paini, M., Aliakbarian, B., Casazza, A. A., Lagazzo, A., Botter, R., & Perego, P. (2015). Microencapsulation of phenolic compounds from olive pomace using spray drying: a study of operative parameters. LWT-Food Science and Technology, 62(1), 177–186.CrossRefGoogle Scholar
  42. Pang, S. F., Yusoff, M. M., & Gimbun, J. (2014). Assessment of phenolic compounds stability and retention during spray drying of Orthosiphon stamineus extracts. Food Hydrocolloids, 37, 159–165.CrossRefGoogle Scholar
  43. Peanparkdee, M., Iwamoto, S., Borompichaichartkul, C., Duangmal, K., & Yamauchi, R. (2016). Microencapsulation of bioactive compounds from mulberry (Morus alba L.) leaf extracts by protein–polysaccharide interactions. International Journal of Food Science & Technology, 51(3), 649–655. Scholar
  44. Phoungchandang, S., & Sertwasana, A. (2010). Spray-drying of ginger juice and physicochemical properties of ginger powders. Science Asia, 36(1), 40–45.CrossRefGoogle Scholar
  45. Rajabi, H., Ghorbani, M., Jafari, S. M., Mahoonak, A. S., & Rajabzadeh, G. (2015). Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum arabic and gelatin as wall materials. Food Hydrocolloids, 51, 327–337.CrossRefGoogle Scholar
  46. Sansone, F., Mencherini, T., Picerno, P., d’Amore, M., Aquino, R. P., & Lauro, M. R. (2011). Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. Journal of Food Engineering, 105(3), 468–476.CrossRefGoogle Scholar
  47. Santhalakshmy, S., Bosco, S. J. D., Francis, S., & Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology, 274, 37–43.CrossRefGoogle Scholar
  48. Santiago-Adame, R., Medina-Torres, L., Gallegos-Infante, J., Calderas, F., González-Laredo, R., Rocha-Guzmán, N., et al. (2015). Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT-Food Science and Technology, 64(2), 571–577.CrossRefGoogle Scholar
  49. Sarabandi, K., Peighambardoust, S. H., Mahoonak, A. S., & Samaei, S. P. (2017). Effect of carrier types and compositions on the production yield, microstructure and physical characteristics of spray dried sour cherry juice concentrate. Journal of Food Measurement and Characterization, 11(4), 1602–1612.CrossRefGoogle Scholar
  50. Savlak, N., Türker, B., & Yeşilkanat, N. (2016). Effects of particle size distribution on some physical, chemical and functional properties of unripe banana flour. Food Chemistry, 213, 180–186.CrossRefGoogle Scholar
  51. Shamaei, S., Seiiedlou, S. S., Aghbashlo, M., Tsotsas, E., & Kharaghani, A. (2017). Microencapsulation of walnut oil by spray drying: effects of wall material and drying conditions on physicochemical properties of microcapsules. Innovative Food Science & Emerging Technologies, 39, 101–112.CrossRefGoogle Scholar
  52. Shishir, M., Taip, F., Aziz, N., & Talib, R. (2014). Physical properties of spray-dried pink guava (Psidium guajava) powder. Agriculture and Agricultural Science Procedia, 2, 74–81.CrossRefGoogle Scholar
  53. Struck, S., Plaza, M., Turner, C., & Rohm, H. (2016). Berry pomace—a review of processing and chemical analysis of its polyphenols. International Journal of Food Science & Technology, 51(6), 1305–1318. Scholar
  54. Sugiyama, M., Katsube, T., Koyama, A., & Itamura, H. (2016). Effect of solar radiation on the functional components of mulberry (Morus alba L.) leaves. Journal of the Science of Food and Agriculture, 96(11), 3915–3921. Scholar
  55. Suhag, Y., Nayik, G. A., & Nanda, V. (2016). Effect of gum arabic concentration and inlet temperature during spray drying on physical and antioxidant properties of honey powder. Journal of Food Measurement and Characterization, 10(2), 350–356.CrossRefGoogle Scholar
  56. Tan, S. P., Tuyen, C. K., Parks, S. E., Stathopoulos, C. E., & Roach, P. D. (2015). Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technology, 281, 65–75.CrossRefGoogle Scholar
  57. Tchabo, W., Ma, Y., Kwaw, E., Xiao, L., Wu, M., & Maurice, A. T. (2018). Impact of extraction parameters and their optimization on the nutraceuticals and antioxidant properties of aqueous extract mulberry leaf. International Journal of Food Properties, 21(1), 717–732. Scholar
  58. Tonon, R. V., Brabet, C., & Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 88(3), 411–418.CrossRefGoogle Scholar
  59. Tontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63(Supplement C), 91–102.CrossRefGoogle Scholar
  60. Tupuna, D. S., Paese, K., Guterres, S. S., Jablonski, A., Flôres, S. H., & de Oliveira Rios, A. (2018). Encapsulation efficiency and thermal stability of norbixin microencapsulated by spray-drying using different combinations of wall materials. Industrial Crops and Products, 111, 846–855.CrossRefGoogle Scholar
  61. Tuyen, C. K., Nguyen, M. H., & Roach, P. D. (2010). Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering, 98(3), 385–392.CrossRefGoogle Scholar
  62. Tuyen, C. K., Nguyen, M. H., Roach, P. D., & Stathopoulos, C. E. (2014). Microencapsulation of Gac oil: optimisation of spray drying conditions using response surface methodology. Powder Technology, 264, 298–309.CrossRefGoogle Scholar
  63. Wilkowska, A., Ambroziak, W., Czyżowska, A., & Adamiec, J. (2016). Effect of microencapsulation by spray-drying and freeze-drying technique on the antioxidant properties of blueberry (Vaccinium myrtillus) juice polyphenolic compounds. Polish Journal of Food and Nutrition Sciences, 66(1), 11–16.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • William Tchabo
    • 1
  • Yongkun Ma
    • 1
    Email author
  • Giscard Kuate Kaptso
    • 2
  • Emmanuel Kwaw
    • 1
  • Rosine Wafo Cheno
    • 3
  • Lulu Xiao
    • 1
  • Richard Osae
    • 1
  • Meng Wu
    • 1
  • Muhammad Farooq
    • 1
  1. 1.School of Food and Biological EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Department of Social Economy and Family Management, Higher Technical Teacher’s Training College (HTTTC)University of BueaKumbaCameroon
  3. 3.Health Policy and ManagementJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations