Advertisement

Antimicrobial Activity of Araucaria angustifolia Seed (Pinhão) Coat Extract and its Synergism with Thermal Treatment to Inactivate Listeria monocytogenes

  • Geferson Henrique Trojaike
  • Elaine Biondo
  • Rosiele Lappe Padilha
  • Adriano Brandelli
  • Voltaire Sant’Anna
Communication
  • 17 Downloads

Abstract

The objective of the present work was to evaluate the antimicrobial activity of aqueous extract from solid waste of Araucaria angustifolia seed (pinhão) at concentration of 10 kg/m3 against a broad spectrum of bacteria and fungi and its synergism with heat treatment against Listeria monocytogenes within temperature range of 55–70 °C. Results showed that pinhão coat extract inhibited the growth of Staphylococcus aureus, Bacillus cereus, L. monocytogenes, L. innocua, and Aeromonas hydrophila, but did not inhibit the fungi evaluated. Kinetic modeling showed that L. monocytogenes inactivation followed the first order model. Results showed that the inactivation rate constant increased 105% when L. monocytogenes was treated at 55 °C in the presence of pinhão coat extract; meanwhile, there was an increase of 58% and 42% at 60 °C and 70 °C, respectively, indicating clearly a synergism between heat treatment and the aqueous extract obtained from the food residue. Thus, pinhão coat extract presents antibacterial activity against important foodborne bacteria and its combination with heat processing implies in reduction of the thermal stability of L. monocytogenes, indicating that the combination of both techniques can be an interesting tool to be used in food preservation.

Keywords

Inactivation kinetics Synergism Thermal treatment Araucaria angustifolia seed Food residue 

Notes

Funding Information

This study received support from State University of Rio Grande do Sul (UERGS, Porto Alegre, Brazil). A.B. is research awardee of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, Brazil).

References

  1. Awuah, G. B., Ramaswamy, H. S., & Economides, A. (2007). Thermal processing and quality: principles and overview. Chemical Engineering and Processing, 46(6), 584–602.CrossRefGoogle Scholar
  2. Behravesh, C. B., Williams, I. T., & Tauxe, R. V. (2012). Emerging foodborne pathogens and problems: expanding prevention efforts before slaughter or harvest. In Improving food safety through a one-health approach. Washington: National Academy Press.Google Scholar
  3. Benlloch-Tinoco, M., Pina-Pérez, M., Martínez-Navarrete, N., & Rodrigo, D. (2014). Listeria monocytogenes inactivation kinetics under microwave and conventional thermal processing in a kiwifruit puree. Innovative Food Science and Emerging Technologies, 22, 131–136.CrossRefGoogle Scholar
  4. Borges, A., Ferreira, C., Saavedra, M. J., & Simões, M. (2013). Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance, 19(4), 256–265.CrossRefGoogle Scholar
  5. Caxambú, S., Biondo, E., Kolchinski, E. M., Lappe, R., Brandelli, A., & Sant’Anna, V. (2016). Evaluation of the antimicrobial activity of pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell aqueous extract on minimally processed lettuce leaves. Food Science and Technology (Campinas), 36(suppl 1), 42–45.CrossRefGoogle Scholar
  6. Cordenunsi, B. R., Menezes, E. W., Genovese, M. I., Colli, C., Souza, A. G., & Lajolo, F. M. (2004). Chemical composition and glycemic index of Brazilian pine (Araucaria angustifolia) seeds. Journal of Agricultural and Food Chemistry, 52(11), 3412–3416.CrossRefGoogle Scholar
  7. Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343–356.CrossRefGoogle Scholar
  8. Gálvez, A., Abriouel, H., López, R. L., & Omar, N. B. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology, 120(1-2), 51–70.CrossRefGoogle Scholar
  9. Kimura, H., Sashihara, T., Matsusaki, H., Sonomoto, K., & Ishizaki, H. (1998). Novel bacteriocin of Pediococcus sp. ISK-1 isolated from well-aged bed of fermented rice bran. Annals New York Academy of Sciences, New York, 864(1 ENZYME ENGINE), 345–348.CrossRefGoogle Scholar
  10. Klein, M. I., Biondo, E., Kolchinski, E. M., & Sant’Anna, V. (2017). Allelopathic effect of aqueous extract from agro-industrial residues of pecan nut [Carya illinoinensis (Wangenh) C. Koch] and pinhão (Araucaria angustifolia). Revista Eletrônica Científica da UERGS, 3(3), 495–507.CrossRefGoogle Scholar
  11. Lappe, R., Cladera-Olivera, F., Dominguez, A. P. M., & Brandelli, A. (2009). Kinetics and thermodynamics of thermal inactivation of the antimicrobial peptide cerein 8A. Journal of Food Engineering, 91(2), 223–227.CrossRefGoogle Scholar
  12. Lou, Z., Wang, H., Rao, S., Sun, J., Ma, C., & Li, J. (2012). p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control, 25(2), 550–554.CrossRefGoogle Scholar
  13. Prado, A. C. P., Silva, H. S., Silveira, S. M., Barreto, P. L. M., Vieira, C. R. W., Maraschin, M., Ferreira, S. R. S., & Block, J. M. (2014). Effect of the extraction process on the phenolic compounds profile and the antioxidant and antimicrobial activity of extracts of pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell. Industrial Crops and Products, 52, 552–561.CrossRefGoogle Scholar
  14. Sant’Anna, V., Sfoglia, N. M., Mercali, G. D., Correa, A. P. F., & Brandelli, A. (2016). Effect of cooking on polyphenols and antioxidant activity of seed coat and evaluation of phytochemical and microbiological stability over storage. International Journal of Food Science & Technology, 51(8), 1932–1936.CrossRefGoogle Scholar
  15. Sant’Anna, V., Biondo, E., Kolchinski, E. M., Silva, L. F. S., Correa, A. P. F., Bach, E., & Brandelli, A. (2017). Total polyphenols, antioxidant, antimicrobial and allelopathic activities of spend coffee ground aqueous extract. Waste and Biomass Valorization, 8(2), 439–442.CrossRefGoogle Scholar
  16. Sant'Anna, V., Quadros, D. A. F., Motta, A. S., & Brandelli, A. (2013). Antibacterial activity of bacteriocin-like substance P34 on Listeria monocytogenes in chicken sausage. Brazilian Journal of Microbiology, 44(4), 1163–1167.CrossRefGoogle Scholar
  17. Venturoso, L. R., Bacchi, L. M. A., Gavassoni, W. L., Conus, L. A., Pontim, B. C. A., & Bergamin, A. C. (2011). Antifungal activity of plant extracts on the development of plant pathogens. Summa Phytopathology, 37(1), 18–23.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Food Residues Processing Laboratory, Life and Environmental AreaState University of Rio Grande do SulEncantadoBrazil
  2. 2.Applied Biochemistry and Microbiology Laboratory, Food Science and Technology InstituteFederal University of Rio Grande do SulPorto AlegreBrazil
  3. 3.UERGS-EncantadoEncantadoBrazil

Personalised recommendations