Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 1, pp 147–157 | Cite as

Effect of Thermosonication on the Bioaccessibility of Antioxidant Compounds and the Microbiological, Physicochemical, and Nutritional Quality of an Anthocyanin-Enriched Tomato Juice

  • Tomas Lafarga
  • Isabel Ruiz-Aguirre
  • Maribel Abadias
  • Inmaculada Viñas
  • Gloria Bobo
  • Ingrid Aguiló-AguayoEmail author
Original Paper
  • 129 Downloads

Abstract

The aim of this study was to assess the potential of thermosonication as a strategy to obtain safe and high-quality tomato juice enriched in anthocyanins, formulated using strawberry processing co-products. Incorporation of strawberry press cake into the tomato juice resulted in higher polyphenolic and anthocyanin content and increased antioxidant capacity. Thermosonication for 5 min at 60 °C at either 35 or 130 kHz resulted in higher microbial inactivation when compared to thermal pasteurisation at 80 °C for 1 min. In addition, thermosonication allowed increased retention of colour attributes as well as polyphenol, lycopene, anthocyanin, and antioxidant capacity retention when compared to thermal treatment. For example, the total anthocyanin content decreased from 1.08 ± 0.04 mg/100 mL before processing to 0.92 ± 0.01 mg/100 mL after thermal pasteurisation but the difference was not significant when compared with the thermosonicated juice (1.06 ± 0.03 mg/100 mL). Although bioaccessibility of phenolic compounds after a simulated gastrointestinal digestion was lower in processed juices, thermosonicated samples showed a higher bioaccessibility when compared to the thermally treated ones.

Keywords

Tomato juice Anthocyanins Thermosonication Pasteurisation Co-product revalorisation Functional foods 

Abbreviations

PG

Polygalacturonase

PME

Pectin methylesterase

TPC

Total phenolic content

TAC

Total anthocyanin content

TLC

Total lycopene content

SSC

Soluble solids content

CJ

Control tomato juice

TAM

Total aerobic mesophilic microorganisms

AEJ

Anthocyanin-enriched juice

P-AEJ

Thermally treated anthocyanin-enriched tomato juice

TS-AEJ

Thermosonicated juice

TTA

Titratable acidity

C*ab

Chroma

δE

Difference from the control

DPPH

2,2-Diphenyl-1-picrylhydrazyl

FRAP

Ferric ion reducing antioxidant power

SPC

Strawberry press cake

S.D.

Standard deviation

ANOVA

Analysis of variance

Notes

Acknowledgements

The authors thank Silvia Villaró for her technical assistance.

Funding Information

This work was supported by the CERCA Programme of Generalitat de Catalunya. T. Lafarga is in receipt of Juan de la Cierva contract awarded by the Spanish Ministry of Economy, Industry, and Competitiveness (FJCI-2016-29541). I. Aguiló-Aguayo thanks the Spanish Ministry of Economy, Industry, and Competitiveness and the European Social Fund for the Postdoctoral Senior Grant Ramon y Cajal (RYC-2016-19949).

References

  1. Abid, M., Jabbar, S., Hu, B., Hashim, M. M., Wu, T., Lei, S., Khan, M. A., & Zeng, X. (2014). Thermosonication as a potential quality enhancement technique of apple juice. Ultrasonics Sonochemistry, 21(3), 984–990.CrossRefGoogle Scholar
  2. Abid, M., Jabbar, S., Wu, T., Hashim, M. M., Hu, B., Lei, S., Zhang, X., & Zeng, X. (2013). Effect of ultrasound on different quality parameters of apple juice. Ultrasonics Sonochemistry, 20(5), 1182–1187.CrossRefGoogle Scholar
  3. Altisent, R., Plaza, L., Alegre, I., Viñas, I., & Abadias, M. (2014). Comparative study of improved vs. traditional apple cultivars and their aptitude to be minimally processed as ‘ready to eat’ apple wedges. LWT-Food Science and Technology, 58(2), 541–549.CrossRefGoogle Scholar
  4. Barba, F. J., Zhu, Z., Koubaa, M., Sant’Ana, A. S., & Orlien, V. (2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends in Food Science & Technology, 49, 96–109.CrossRefGoogle Scholar
  5. Bermúdez-Aguirre, D., & Barbosa-Cánovas, G. V. (2012). Inactivation of Saccharomyces cerevisiae in pineapple, grape and cranberry juices under pulsed and continuous thermo-sonication treatments. Journal of Food Engineering, 108(3), 383–392.CrossRefGoogle Scholar
  6. Bermúdez-Soto, M.-J., Tomás-Barberán, F.-A., & García-Conesa, M.-T. (2007). Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chemistry, 102(3), 865–874.CrossRefGoogle Scholar
  7. Bueno, J. M., Sáez-Plaza, P., Ramos-Escudero, F., Jiménez, A. M., Fett, R., & Asuero, A. G. (2012). Analysis and antioxidant capacity of anthocyanin pigments. Part II: chemical structure, color, and intake of anthocyanins. Critical Reviews in Analytical Chemistry, 42(2), 126–151.CrossRefGoogle Scholar
  8. Cano-Lamadrid, M., Trigueros, L., Wojdyło, A., Carbonell-Barrachina, Á. A., & Sendra, E. (2017). Anthocyanins decay in pomegranate enriched fermented milks as a function of bacterial strain and processing conditions. LWT – Food Science and Technology, 80, 193–199.CrossRefGoogle Scholar
  9. Cassidy, A., O’Reilly, É. J., Kay, C., Sampson, L., Franz, M., Forman, J., Curhan, G., & Rimm, E. B. (2010). Habitual intake of flavonoid subclasses and incident hypertension in adults. The American Journal of Clinical Nutrition, 93(2), 338–347.CrossRefGoogle Scholar
  10. Chakraborty, S., Baier, D., Knorr, D., & Mishra, H. N. (2015). High pressure inactivation of polygalacturonase, pectinmethylesterase and polyphenoloxidase in strawberry puree mixed with sugar. Food and Bioproducts Processing, 95, 281–291.CrossRefGoogle Scholar
  11. Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540–560.CrossRefGoogle Scholar
  12. Chen, G.-L., Chen, S.-G., Zhao, Y.-Y., Luo, C.-X., Li, J., & Gao, Y.-Q. (2014). Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Industrial Crops and Products, 57, 150–157.CrossRefGoogle Scholar
  13. Chen, X., Qin, W., Ma, L., Xu, F., Jin, P., & Zheng, Y. (2015). Effect of high pressure processing and thermal treatment on physicochemical parameters, antioxidant activity and volatile compounds of green asparagus juice. LWT - Food Science and Technology, 62(1), 927–933.CrossRefGoogle Scholar
  14. Cserhalmi, Z., Sass-Kiss, A., Tóth-Markus, M., & Lechner, N. (2006). Study of pulsed electric field treated citrus juices. Innovative Food Science & Emerging Technologies, 7(1–2), 49–54.CrossRefGoogle Scholar
  15. Ercan, S. Ş., & Soysal, Ç. (2011). Effect of ultrasound and temperature on tomato peroxidase. Ultrasonics Sonochemistry, 18(2), 689–695.CrossRefGoogle Scholar
  16. Escudero-López, B., Cerrillo, I., Gil-Izquierdo, Á., Hornero-Méndez, D., Herrero-Martín, G., Berná, G., Medina, S., Ferreres, F., Martín, F., & Fernández-Pachón, M.-S. (2016). Effect of thermal processing on the profile of bioactive compounds and antioxidant capacity of fermented orange juice. Internationalion for thermal and gastrointe Journal of Food Sciences and Nutrition, 67(7), 779–788.CrossRefGoogle Scholar
  17. Fernandes, A., Rocha, M. A. A., Santos, L. M. N. B. F., Brás, J., Oliveira, J., Mateus, N., & de Freitas, V. (2018). Blackberry anthocyanins: β-Cyclodextrin fortification for thermal and gastrointestinal stabilization. Food Chemistry, 245, 426–431.CrossRefGoogle Scholar
  18. Fish, W. W., Perkins-Veazie, P., & Collins, J. K. (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. Journal of Food Composition and Analysis, 15(3), 309–317.CrossRefGoogle Scholar
  19. Gültekin-Özgüven, M., Karadağ, A., Duman, Ş., Özkal, B., & Özçelik, B. (2016). Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies. Food Chemistry, 201, 205–212.CrossRefGoogle Scholar
  20. Hidalgo, M., Sánchez-Moreno, C., & de Pascual-Teresa, S. (2010). Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chemistry, 121(3), 691–696.CrossRefGoogle Scholar
  21. Jabbar, S., Abid, M., Hu, B., Hashim, M. M., Lei, S., Wu, T., & Zeng, X. (2015). Exploring the potential of thermosonication in carrot juice processing. Journal of Food Science and Technology, 52(11), 7002–7013.CrossRefGoogle Scholar
  22. Kamiloglu, S., Ozkan, G., Isik, H., Horoz, O., Van Camp, J., & Capanoglu, E. (2017). Black carrot pomace as a source of polyphenols for enhancing the nutritional value of cake: an in vitro digestion study with a standardized static model. LWT – Food Science and Technology, 77, 475–481.CrossRefGoogle Scholar
  23. Khandpur, P., & Gogate, P. R. (2015). Effect of novel ultrasound based processing on nutrition quality of different fruit and vegetables juices. Ultrasonics Sonochemistry, 27, 125–136.CrossRefGoogle Scholar
  24. Khandpur, P., & Gogate, P. R. (2016). Evaluation of ultrasound based sterilization approaches in terms of shelf life and quality parameters of fruit and vegetables juices. Ultrasonics Sonochemistry, 29, 337–353.CrossRefGoogle Scholar
  25. Kiang, W. S., Bhat, R., Rosma, A., & Cheng, L. H. (2013). Effects of thermosonication on the fate of Escherichia coli O157: H7 and Salmonella Enteritidis in mango juice. Letters in Applied Microbiology, 56(4), 251–257.CrossRefGoogle Scholar
  26. Lafarga, T., Viñas, I., Bobo, G., Simó, J., & Aguiló-Aguayo, I. (2018). Effect of steaming and sous vide processing on the total phenolic content, vitamin C and antioxidant potential of the genus Brassica. Innovative Food Science & Emerging Technologies, 47, 412–420.CrossRefGoogle Scholar
  27. Ma, H., Johnson, S. L., Liu, W., DaSilva, N. A., Meschwitz, S., Dain, J. A., & Seeram, N. P. (2018). Evaluation of polyphenol anthocyanin-enriched extracts of blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry for free radical scavenging, reactive carbonyl species trapping, anti-glycation, anti-β-amyloid aggregation, and microglial neuroprotective effects. International Journal of Molecular Sciences, 19(2), 461.CrossRefGoogle Scholar
  28. Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727–747.CrossRefGoogle Scholar
  29. Meyers, K. J., Watkins, C. B., Pritts, M. P., & Liu, R. H. (2003). Antioxidant and antiproliferative activities of strawberries. Journal of Agricultural and Food Chemistry, 51(23), 6887–6892.CrossRefGoogle Scholar
  30. Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carriere, F., Boutrou, R., Corredig, M., & Dupont, D. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & Function, 5(6), 1113–1124.CrossRefGoogle Scholar
  31. Muraki, I., Imamura, F., Manson, J. E., Hu, F. B., Willett, W. C., van Dam, R. M., & Sun, Q. (2013). Fruit consumption and risk of type 2 diabetes: results from three prospective longitudinal cohort studies. BMJ, 347, f5001.CrossRefGoogle Scholar
  32. Pérez-Jiménez, J., & Saura-Calixto, F. (2005). Literature data may underestimate the actual antioxidant capacity of cereals. Journal of Agricultural and Food Chemistry, 53(12), 5036–5040.CrossRefGoogle Scholar
  33. Pineda-Vadillo, C., Nau, F., Dubiard, C. G., Cheynier, V., Meudec, E., Sanz-Buenhombre, M., Guadarrama, A., Tóth, T., Csavajda, É., Hingyi, H., Karakaya, S., Sibakov, J., Capozzi, F., Bordoni, A., & Dupont, D. (2016). In vitro digestion of dairy and egg products enriched with grape extracts: Effect of the food matrix on polyphenol bioaccessibility and antioxidant activity. Food Research International, 88, 284–292.CrossRefGoogle Scholar
  34. Pineda-Vadillo, C., Nau, F., Guerin-Dubiard, C., Jardin, J., Lechevalier, V., Sanz-Buenhombre, M., Guadarrama, A., Tóth, T., Csavajda, É., Hingyi, H., Karakaya, S., Sibakov, J., Capozzi, F., Bordoni, A., & Dupont, D. (2017). The food matrix affects the anthocyanin profile of fortified egg and dairy matrices during processing and in vitro digestion. Food Chemistry, 214, 486–496.CrossRefGoogle Scholar
  35. Plaza, L., Altisent, R., Alegre, I., Viñas, I., & Abadias, M. (2016). Changes in the quality and antioxidant properties of fresh-cut melon treated with the biopreservative culture Pseudomonas graminis CPA-7 during refrigerated storage. Postharvest Biology and Technology, 111, 25–30.CrossRefGoogle Scholar
  36. Rawson, A., Tiwari, B. K., Patras, A., Brunton, N., Brennan, C., Cullen, P. J., & O’Donnell, C. (2011). Effect of thermosonication on bioactive compounds in watermelon juice. Food Research International, 44(5), 1168–1173.CrossRefGoogle Scholar
  37. Rithmanee, T., & Intipunya, P. (2012). Effects of high power ultrasonic pretreatment on physicochemical quality and enzymatic activities of dried longan. Journal of Agricultural Science, 4(11), 299.CrossRefGoogle Scholar
  38. Šaponjac, V. T., Gironés-Vilaplana, A., Djilas, S., Mena, P., Ćetković, G., Moreno, D. A., Čanadanović-Brunet, J., Vulić, J., Stajčića, S., & Vinčića, M. (2015). Chemical composition and potential bioactivity of strawberry pomace. RSC Advances, 5(7), 5397–5405.CrossRefGoogle Scholar
  39. Sila, D. N., Duvetter, T., De Baerdemaeker, J., & Hendrickx, M. (2008). Effect of mechanical impact-bruising on polygalacturonase and pectinmethylesterase activity and pectic cell wall components in tomato fruit. Postharvest Biology and Technology, 47(1), 98–106.CrossRefGoogle Scholar
  40. Sui, X., Zhang, Y., & Zhou, W. (2016). Bread fortified with anthocyanin-rich extract from black rice as nutraceutical sources: its quality attributes and in vitro digestibility. Food Chemistry, 196, 910–916.CrossRefGoogle Scholar
  41. Terefe, N. S., Gamage, M., Vilkhu, K., Simons, L., Mawson, R., & Versteeg, C. (2009). The kinetics of inactivation of pectin methylesterase and polygalacturonase in tomato juice by thermosonication. Food Chemistry, 117(1), 20–27.CrossRefGoogle Scholar
  42. Walkling-Ribeiro, M., Noci, F., Riener, J., Cronin, D., Lyng, J., & Morgan, D. (2009). The impact of thermosonication and pulsed electric fields on Staphylococcus aureus inactivation and selected quality parameters in orange juice. Food and Bioprocess Technology, 2(4), 422–430.CrossRefGoogle Scholar
  43. Wibowo, S., Vervoort, L., Tomic, J., Santiago, J. S., Lemmens, L., Panozzo, A., Grauwet, T., Hendrickx, M., & Van Loey, A. (2015). Colour and carotenoid changes of pasteurised orange juice during storage. Food Chemistry, 171, 330–340.CrossRefGoogle Scholar
  44. Zhao, M., Wang, P., Zhu, Y., Liu, X., Hu, X., & Chen, F. (2015). Blueberry anthocyanins extract inhibits acrylamide-induced diverse toxicity in mice by preventing oxidative stress and cytochrome P450 2E1 activation. Journal of Functional Foods, 14, 95–101.CrossRefGoogle Scholar
  45. Zudaire, L., Viñas, I., Abadias, M., Simó, J., Echeverria, G., Plaza, L., & Aguiló-Aguayo, I. (2017). Quality and bioaccessibility of total phenols and antioxidant activity of calçots (Allium cepa L.) stored under controlled atmosphere conditions. Postharvest Biology and Technology, 129, 118–128.CrossRefGoogle Scholar
  46. Zudaire, L., Viñas, I., Plaza, L., Iglesias, M. B., Abadias, M., & Aguiló-Aguayo, I. (2018). Evaluation of postharvest calcium treatment and biopreservation with Lactobacillus rhamnosus GG on the quality of fresh-cut ‘Conference’ pears. Journal of the Science of Food and Agriculture, 98(13), 4978–4987.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tomas Lafarga
    • 1
  • Isabel Ruiz-Aguirre
    • 2
  • Maribel Abadias
    • 1
  • Inmaculada Viñas
    • 2
  • Gloria Bobo
    • 1
  • Ingrid Aguiló-Aguayo
    • 1
    Email author
  1. 1.IRTA, XaRTA-PostharvestProcessed Fruits and VegetablesLleidaSpain
  2. 2.Food Technology DepartmentUniversity of Lleida, XaRTA-PostharvestLleidaSpain

Personalised recommendations