Advertisement

Partial Substitution of Margarine by Microencapsulated Chia Seeds Oil in the Formulation of Cookies

  • Larissa Hernandes Venturini
  • Thaysa Fernandes Moya Moreira
  • Tamires Barlati Vieira da Silva
  • Melina Maynara Carvalho de Almeida
  • Cristhian Rafael Lopes Francisco
  • Anielle de Oliveira
  • Sabrina Silva de Campos
  • Ana Paula Bilck
  • Roberta de Souza Leone
  • Ailey Aparecida Coelho Tanamati
  • Odinei Hess Gonçalves
  • Fernanda Vitória Leimann
Original Paper
  • 4 Downloads

Abstract

Partial substitution of margarine by microencapsulated chia oil (rich in n-3 and n-6 fatty acids) in carnauba wax solid lipid microparticles was investigated, to obtain cookies containing omega-3 and omega-6. The microparticles were prepared by the hot homogenisation in which the lipid phase is molten and dispersed as small droplets in an aqueous phase followed by a cooling/solidification step. Cookies were produced using only margarine (control) and also with partial substitution of margarine by microencapsulated chia oil (15% and 30%wt). Texture profile analysis results of the cookie dough (pre-baking) were affected (p < 0.05) by partial substitution; however, the puncture force of the baked cookies was not impacted. The α-linolenic acid concentration increased 48.5 and 110.4%, respectively, when compared with the control sample, and the atherogenicity and·thrombogenicity indexes were significantly reduced. The thermal behaviour of the microparticles was similar before and after incorporation into the cookies (differential scanning calorimetry), despite melting during baking of the cookies. Cookies with 30%wt substitution exhibited the highest storage colour stability. Changes in the cookie moisture sorption were detected due to the presence of the microcapsules, which is probably an indication of water immobilisation by sodium caseinate used in the particle formulation. Sensory analysis demonstrated good acceptability for the sample with 15%wt margarine substitution.

Keywords

Atherogenicity Thrombogenicity Texture profile analysis Differential scanning calorimetry Moisture sorption isotherm Microstructure 

Notes

Acknowledgements

Authors thank the CMCM (Centro Multiusuário de Caracterização de Materiais, UTFPR-Campus Curitiba, Brazil) for the SEM analysis.

Funding Information

This study was financially supported by CAPES.

Compliance with Ethical Standards

This work was approved by the Ethics Committee in Research of the Federal Technological University of Parana (UTFPR), Brazil, under protocol number 67425317.0.0000.5547.

References

  1. Armero, E., & Collar, C. (1997). Texture properties of formulated what doughs. Relationships with dough and bread technological quality. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung a-Food Research and Technology, 204(2), 136–145.CrossRefGoogle Scholar
  2. Bastıoğlu, A. Z., Koç, M., & Ertekin, F. K. (2017). Moisture sorption isotherm of microencapsulated extra virgin olive oil by spray drying. Journal of Food Measurement and Characterization, 11(0), 1–11.  https://doi.org/10.1007/s11694-017-9507-4.CrossRefGoogle Scholar
  3. Brunauer, S., Emmet, P. H., & Teller, E. (1938). Adsorption of gases in multi molecular layers. Journal of the American Chemical Society, 60(2), 309–320.CrossRefGoogle Scholar
  4. Chen, L., & Opara, U. L. (2013). Texture measurement approaches in fresh and processed foods - a review. Food Research International, 51(2), 823–835.  https://doi.org/10.1016/j.foodres.2013.01.046.CrossRefGoogle Scholar
  5. Chevallier, S., Della Valle, G., Colonna, P., Broyart, B., & Trystram, G. (2002). Structural and chemical modifications of short dough during baking. Journal of Cereal Science, 35(1), 1–10.  https://doi.org/10.1006/jcrs.2001.0388.CrossRefGoogle Scholar
  6. Collar, C., Andreu, P., & Martinez-Anaya, M. a. (1998). Interactive effects of flour, starter and enzyme on bread dough machinability. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung a-Food Research and Technology, 207(2), 133–139.  https://doi.org/10.1007/s002170050307.CrossRefGoogle Scholar
  7. Collar, C., Andreu, P., Martínez, J. ., & Armero, E. (1999). Optimization of hydrocolloid addition to improve wheat bread dough functionality: A response surface methodology study. Food Hydrocolloids, 13(6), 467–475.  https://doi.org/10.1016/S0268-005X(99)00030-2.CrossRefGoogle Scholar
  8. Davidov-Pardo, G., Moreno, M., Arozarena, I., Marín-Arroyo, M. R., Bleibaum, R. N., & Bruhn, C. M. (2012). Sensory and consumer perception of the addition of grape seed extracts in cookies. Journal of Food Science, 77(12), S430–S438.  https://doi.org/10.1111/j.1750-3841.2012.02991.x.CrossRefPubMedGoogle Scholar
  9. de Almeida, M. M. C., Francisco, C. R. L., de Oliveira, A., de Campos, S. S., Bilck, A. P., Fuchs, R. H. B., et al. (2018). Textural, color, hygroscopic, lipid oxidation, and sensory properties of cookies containing free and microencapsulated chia oil. Food and Bioprocess Technology, 11(5), 1–14.  https://doi.org/10.1007/s11947-018-2057-x.CrossRefGoogle Scholar
  10. Fuchs, R. H. B., Ribeiro, R. P., Matsushita, M., Tanamati, A. A. C., Bona, E., & de Souza, A. H. P. (2013). Enhancement of the nutritional status of Nile tilapia (Oreochromis niloticus) croquettes by adding flaxseed flour. LWT - Food Science and Technology, 54(2), 440–446.  https://doi.org/10.1016/j.lwt.2013.07.004.CrossRefGoogle Scholar
  11. Garsetti, M., Balentine, D. A., Zock, P. L., Blom, W. A. M., & Wanders, A. J. (2016). Fat composition of vegetable oil spreads and margarines in the USA in 2013: A national marketplace analysis. International Journal of Food Sciences and Nutrition, 67(4), 372–382.  https://doi.org/10.3109/09637486.2016.1161012.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Guimarães-Inácio, A., Francisco, C. R. L., Rojas, V. M., Leone, R. D. S., Valderrama, P., Bona, E., et al. (2018). Evaluation of the oxidative stability of chia oil-loaded microparticles by thermal, spectroscopic and chemometric methods. LWT - Food Science and Technology, 87, 498–506.  https://doi.org/10.1016/j.lwt.2017.09.031.CrossRefGoogle Scholar
  13. Hartman, L., & Lago, R. C. (1973). Rapid preparation of fatty acid methyl esters from lipids. Laboratory practice, 22(6), 475–476.Google Scholar
  14. Jayasena, V., & Nasar-Abbas, S. M. (2011). Effect of lupin flour incorporation on the physical characteristics of dough and biscuits. Quality Assurance and Safety of Crops and Foods, 3(3), 140–147.  https://doi.org/10.1111/j.1757-837X.2011.00100.x.CrossRefGoogle Scholar
  15. Laguna, L., Primo-Martín, C., Salvador, A., & Sanz, T. (2013). Inulin and erythritol as sucrose replacers in short-dough cookies: Sensory, fracture, and acoustic properties. Journal of Food Science, 78(5), S777–S784.  https://doi.org/10.1111/1750-3841.12119.CrossRefPubMedGoogle Scholar
  16. Lu, Y., Thomas, L., & Schmidt, S. (2017). Differences in the thermal behavior of beet and cane sucrose sources. Journal of Food Engineering, 201, 57–70.  https://doi.org/10.1016/j.jfoodeng.2017.01.005.CrossRefGoogle Scholar
  17. Lutz, I. A. (2008). Métodos químicos e físicos para análise de alimentos, 4. ed. São PauloGoogle Scholar
  18. Martin, J. M., Miranda, R. A., Barella, L. F., Palma-Rigo, K., Alves, V. S., Fabricio, G. S., et al. (2016). Maternal diet supplementation with n-6/n-3 essential fatty acids in a 1.2: 1.0 ratio attenuates metabolic dysfunction in MSG-induced obese mice. International Journal of Endocrinology, 2016, 1–10.  https://doi.org/10.1155/2016/9242319.CrossRefGoogle Scholar
  19. Mcguire, R. G. (1992). Reporting of objective color measurements. HortScience, 27(12), 1254–1255.Google Scholar
  20. Milinsk, M. C., Matsushita, M., Visentainer, J. V., De Oliveira, C. C., & De Souza, N. E. (2008). Comparative analysis of eight esterification methods in the quantitative determination of vegetable oil fatty acid methyl esters (FAME). Journal of the Brazilian Chemical Society, 19(8), 1475–1483.  https://doi.org/10.1590/S0103-50532008000800006.CrossRefGoogle Scholar
  21. Ng, S. H., Robert, S. D., Wan Ahmad, W. A. N., & Wan Ishak, W. R. (2017). Incorporation of dietary fibre-rich oyster mushroom (Pleurotus sajor-caju) powder improves postprandial glycaemic response by interfering with starch granule structure and starch digestibility of biscuit. Food Chemistry, 227, 358–368.  https://doi.org/10.1016/j.foodchem.2017.01.108.CrossRefPubMedGoogle Scholar
  22. Nishibori, S., & Kawakishi, S. (1992). Effect of various sugars on the quality of baked cookies. Cereal Chemistry, 69(2), 160–163.Google Scholar
  23. O’Brien, C. M., Chapman, D., Neville, D. P., Keogh, M. K., & Arendt, E. K. (2003). Effect of varying the microencapsulation process on the functionality of hydrogenated vegetable fat in shortdough biscuits. Food Research International, 36(3), 215–221.  https://doi.org/10.1016/S0963-9969(02)00139-4.CrossRefGoogle Scholar
  24. Quirijns, E. J., Van Boxtel, A. J. B., Van Loon, W. K. P., & Van Straten, G. (2005). Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture, 85(11), 1805–1814.  https://doi.org/10.1002/jsfa.2140.CrossRefGoogle Scholar
  25. Rao, B. D., Anis, M., Kalpana, K., Sunooj, K. V., Patil, J. V., & Ganesh, T. (2016). Influence of milling methods and particle size on hydration properties of sorghum flour and quality of sorghum biscuits. LWT - Food Science and Technology, 67, 8–13.  https://doi.org/10.1016/j.lwt.2015.11.033.CrossRefGoogle Scholar
  26. Rodrigues, M. G. G., Santos, E. F., Sanches, F. L. F. Z., Novello, D., Manhani, M. R., & Neumann, M. (2014). Desenvolvimento de cookies adicionados de farinha de yacon (Smallanthus sonchifolius): caracterização química e aceitabilidade sensorial entre portadores de Diabetes Mellitus. Revista do Instituto Adolfo Lutz, 73(2), 219–225.  https://doi.org/10.18241/0073-98552014731608.CrossRefGoogle Scholar
  27. Rodríguez-García, J., Salvador, A., & Hernando, I. (2014). Replacing fat and sugar with inulin in cakes: Bubble size distribution, physical and sensory properties. Food and Bioprocess Technology, 7(4), 964–974.  https://doi.org/10.1007/s11947-013-1066-z.CrossRefGoogle Scholar
  28. Rosiaux, Y., Jannin, V., Hughes, S., & Marchaud, D. (2015). Solid lipid excipients as matrix agents for sustained drug delivery. Excipient Applications in Formulation Design and Drug Delivery, 188, 237–271.  https://doi.org/10.1007/978-3-319-20206-8_9.CrossRefGoogle Scholar
  29. Santos-Silva, J., Bessa, R. J. B., & Santos-Silva, F. (2002). Effect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livestock Production Science, 77(2–3), 187–194.  https://doi.org/10.1016/S0301-6226(02)00059-3.CrossRefGoogle Scholar
  30. Sanz, T., Quiles, A., Salvador, A., & Hernando, I. (2017). Structural changes in biscuits made with cellulose emulsions as fat replacers. Food Science and Technology International, 7, 108201321770327.  https://doi.org/10.1177/1082013217703273.CrossRefGoogle Scholar
  31. Šaponjac, V. T., Ćetković, G., Čanadanović-Brunet, J., Pajin, B., Djilas, S., Petrović, J., et al. (2016). Sour cherry pomace extract encapsulated in whey and soy proteins: Incorporation in cookies. Food Chemistry, 207, 27–33.  https://doi.org/10.1016/j.foodchem.2016.03.082.CrossRefGoogle Scholar
  32. Shimizu, F. M., Visentainer, J. V., & de Souza, N. E. (2011). Proximate composition and quantification of fatty acids in major Brazilian brands of margarine and vegetable creams marketed in Brazil. Ciência e Tecnologia de Alimentos, 31(2), 541–546.  https://doi.org/10.1590/S0101-20612011000200040.CrossRefGoogle Scholar
  33. Simopoulos, A. P. (2011). Evolutionary aspects of diet: The omega-6/omega-3 ratio and the brain. Molecular Neurobiology, 44(3), 203–215.  https://doi.org/10.1007/s12035-010-8162-0.CrossRefPubMedGoogle Scholar
  34. Škrbić, B., & Cvejanov, J. (2011). The enrichment of wheat cookies with high-oleic sunflower seed and hull-less barley flour: Impact on nutritional composition, content of heavy elements and physical properties. Food Chemistry, 124(4), 1416–1422.  https://doi.org/10.1016/j.foodchem.2010.07.101.CrossRefGoogle Scholar
  35. Souza, M. F., Francisco, C. R. L., Sanchez, J. L., Guimarães-Inácio, A., Valderrama, P., Bona, E., et al. (2017). Fatty acids profile of chia oil-loaded lipid microparticles. Brazilian Journal of Chemical Engineering, 34(3), 659–669.CrossRefGoogle Scholar
  36. Sozer, N., Cicerelli, L., Heiniö, R. L., & Poutanen, K. (2014). Effect of wheat bran addition on invitro starch digestibility, physico-mechanical and sensory properties of biscuits. Journal of Cereal Science, 60(1), 105–113.  https://doi.org/10.1016/j.jcs.2014.01.022.CrossRefGoogle Scholar
  37. Sudha, M. L., Chetana, R., & Reddy, S. Y. (2014). Effect of microencapsulated fat powders on rheological characteristics of biscuit dough and quality of biscuits. Journal of Food Science and Technology, 51(12), 3984–3990.  https://doi.org/10.1007/s13197-013-0936-8.CrossRefPubMedGoogle Scholar
  38. Szczesniak, A. S. (2002). Texture is a sensory property, 13, 215–225.Google Scholar
  39. Ulbricht, T. L. V., & Southgate, D. A. T. (1991). Coronary heart disease: Seven dietary factors. The Lancet, 31(03), 985–992.  https://doi.org/10.1017/S0952675714000244.CrossRefGoogle Scholar
  40. Ullah, R., Nadeem, M., Khalique, A., Imran, M., Mehmood, S., Javid, A., & Hussain, J. (2016). Nutritional and therapeutic perspectives of chia (Salvia hispanica L.): A review. Journal of Food Science and Technology, 53(4), 1750–1758.  https://doi.org/10.1007/s13197-015-1967-0.CrossRefPubMedGoogle Scholar
  41. Umesha, S. S., Manohar, R. S., Indiramma, A. R., Akshitha, S., & Naidu, K. A. (2015). Enrichment of biscuits with microencapsulated omega-3 fatty acid (alpha-linolenic acid) rich garden cress (Lepidium sativum) seed oil: Physical, sensory and storage quality characteristics of biscuits. LWT - Food Science and Technology, 62(1), 654–661.  https://doi.org/10.1016/j.lwt.2014.02.018.CrossRefGoogle Scholar
  42. Vrignaud, M. Y. (1977). Milk proteins, their properties and applications. CCB : Review for Chocolate, Confectionery and Bakery., 2, 11–13.Google Scholar
  43. Wood, J. D., Richardson, R. I., Nute, G. R., Fisher, A. V., Campo, M. M., Kasapidou, E., et al. (2004). Effects of fatty acids on meat quality: A review. Meat Science, 66(1), 21–32.  https://doi.org/10.1016/S0309-1740(03)00022-6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Larissa Hernandes Venturini
    • 1
  • Thaysa Fernandes Moya Moreira
    • 2
  • Tamires Barlati Vieira da Silva
    • 2
  • Melina Maynara Carvalho de Almeida
    • 2
  • Cristhian Rafael Lopes Francisco
    • 1
  • Anielle de Oliveira
    • 2
  • Sabrina Silva de Campos
    • 1
  • Ana Paula Bilck
    • 3
  • Roberta de Souza Leone
    • 1
  • Ailey Aparecida Coelho Tanamati
    • 2
  • Odinei Hess Gonçalves
    • 2
  • Fernanda Vitória Leimann
    • 2
  1. 1.Food Department (DALIM)Federal University of Technology–Paraná–UTFPR, Campus Campo MourãoCampo MourãoBrazil
  2. 2.Post-Graduation Program of Food Technology (PPGTA)Federal University of Technology–Paraná–UTFPR, Campus Campo MourãoCampo MourãoBrazil
  3. 3.Science and Technology DepartmentLondrina State University (UEL), RodLondrinaBrazil

Personalised recommendations