Food and Bioprocess Technology

, Volume 12, Issue 1, pp 88–97 | Cite as

Nanoencapsulation of a Bacteriocin from Pediococcus acidilactici ITV26 by Microfluidization

  • J. A. García-Toledo
  • B. Torrestiana-Sánchez
  • C. E. Martínez-Sánchez
  • J. M. Tejero-Andrade
  • A. García-Bórquez
  • P. G. Mendoza-GarcíaEmail author
Original Paper


The bacteriocin (pediocin) produced by Pediococcus acidilactici ITV26 is a bioconservative with antilisterial activity that can be inactivated when added in free form into foods. Proteolytic enzymes or interaction/binding with some food components are among the factors that can affect its antimicrobial activity. Hence, there is a need to protect these peptides by encapsulation into liposomes as well as to control their release. The aim of this research was to establish conditions to obtain stable liposomes with pediocin, to keep their activity and to control the release of the encapsulated bacteriocin. Pediocin was purified by adsorption-desorption and liposomes were prepared by using different phosphatidylcholine concentrations (1, 3, and 5% w/v) and different operating conditions in the microfluidizer (500–1000 bar and 1–2 cycles). The liposomes obtained were characterized by using dynamic light scattering, backscattering light, and cryo transmission electron microscopy. In addition, the effect of pH on the kinetics of pediocin release was studied, and its antimicrobial activity was tested by following the growth kinetics of Listeria innocua AST-062 under different treatments with pediocin-encapsulated liposomes.


Bacteriocin Liposome Microfluidization Nanoencapsulation 



The authors acknowledge the CNMN (Centro de Nanociencias y Micro y Nanotecnologías) of the National Polytechnic Institute for the samples analysis by cryoTEM.

Funding Information

This work was supported by the Tecnológico Nacional de México/I.T. Veracruz trough Proyect 6293.17-P and the CONACyT (Consejo Nacional de Ciencia y Tecnología).


  1. Aditya, N. P., Espinosa, Y. G., & Norton, I. T. (2017). Encapsulation systems for the delivery of hydrophilic nutraceuticals: food application. Biotechnology Advances, 35(4), 450–457. Scholar
  2. Almgren, M., Edwards, K., & Karlsson, G. (2000). Cryo transmission electron microscopy of liposomes and related structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 174(1–2), 3–21. Scholar
  3. Beaulieu, J., Moles, A., Leitch, I., Bennett, M., Dickie, J., & Knight, C. (2007). Correlated evolution of genome size and seed mass. The New Phytologist, 173(2), 422–437. Scholar
  4. Benech, R. O., Kheadr, E. E., Laridi, R., Lacroix, C., & Fliss, I. (2002). Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Applied and Environmental Microbiology, 68(8), 3683–3690. Scholar
  5. Bhunia, A. K., Johnson, M. C., Ray, B., & Kalchayanand, N. (1991). Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. Journal of Applied Microbiology, 70(1), 25–33. Scholar
  6. Colas, J. C., Shi, W., Rao, V. S. N. M., Omri, A., Mozafari, M. R., & Singh, H. (2007). Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron, 38(8), 841–847.CrossRefGoogle Scholar
  7. Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: developing innate immunity for food. Nature Reviews. Microbiology, 3(10), 777–788.PubMedGoogle Scholar
  8. da Silva Malheiros, P., Daroit, D. J., da Silveira, N. P., & Brandelli, A. (2010). Effect of nanovesicle-encapsulated nisin on growth of Listeria monocytogenes in milk. Food Microbiology, 27(1), 175–178. Scholar
  9. de Mello, M. B., da Silva Malheiros, P., Brandelli, A., Pesce da Silveira, N., Jantzen, M. M., & de Souza da Motta, A. (2013). Characterization and antilisterial effect of phosphatidylcholine nanovesicles containing the antimicrobial peptide Pediocin. Probiotics and Antimicrobial Proteins, 5(1), 43–50. Scholar
  10. de Vos, P., Faas, M. M., Spasojevic, M., & Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20(4), 292–302. Scholar
  11. De Vuyst, L., Foulquié Moreno, M. R., & Revets, H. (2003). Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. International Journal of Food Microbiology, 84(3), 299–318. Scholar
  12. Degnan, A. J., Buyong, N., & Luchansky, J. B. (1993). Antilisterial activity of pediocin AcH in model food systems in the presence of an emulsifier or encapsulated within liposomes. International Journal of Food Microbiology, 18(2), 127–138. Scholar
  13. Drider, D., Fimland, G., Héchard, Y., McMullen, L. M., & Prévost, H. (2006). The continuing story of class IIa bacteriocins. Microbiology and Molecular Biology Reviews: MMBR, 70(2), 564–582.CrossRefGoogle Scholar
  14. Imran, M., Revol-Junelles, A. M., René, N., Jamshidian, M., Akhtar, M. J., Arab-Tehrany, E., et al. (2012). Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocolloids, 29(2), 407–419. Scholar
  15. Jack, R. W., Tagg, J. R., & Ray, B. (1995). Bacteriocins of gram-positive bacteria. Microbiological Reviews, 59(2), 171–200.PubMedPubMedCentralGoogle Scholar
  16. Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids, 22(7), 1191–1202. Scholar
  17. Kemperman, R., Kuipers, A., Karsens, H., Nauta, A., Kuipers, O., & Kok, J. (2003). Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Applied and Environmental Microbiology, 69(3), 1589–1597.CrossRefGoogle Scholar
  18. Laridi, R., Kheadr, E. E., Benech, R. O., Vuillemard, J. C., Lacroix, C., & Fliss, I. (2003). Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. International Dairy Journal, 13(4), 325–336.CrossRefGoogle Scholar
  19. Mesa-Pereira, B., O' Connor, P. M., Rea, M.C., P. D., Hill, C. & Ross, R. P. (2017). Controlled functional expression of the bacteriocins pediocin PA-1 and bactofecin A in Escherichia coli. Scientific Reports, 7(1), 1–11.
  20. Mozafari, M. R., Reed, C. J., Rostron, C., Kocum, C., & Piskin, E. (2002). Construction of stable anionic liposome-plasmid particles using the heating method: a preliminary investigation. Cellular and Molecular Biology Letters, 7(September), 923–927 Retrieved from Scholar
  21. Mozafari, M. R., Johnson, C., Hatziantoniou, S., & Demetzos, C. (2008). Nanoliposomes and their applications in food nanotechnology. Journal of Liposome Research, 18(4), 309–327. Scholar
  22. Narsaiah, K., Jha, S. N., Wilson, R. A., Mandge, H. M., Manikantan, M. R., Malik, R. K., & Vij, S. (2012). Pediocin-loaded nanoliposomes and hybrid alginate–nanoliposome delivery systems for slow release of pediocin. BioNanoScience, 3(1), 37–42. Scholar
  23. Narsaiah, K., Jha, S. N., Wilson, R. A., Mandge, H. M., Manikantan, M. R., Malik, R. K., & Vij, S. (2013). Pediocin-loaded nanoliposomes and hybrid alginate-nanoliposome delivery systems for slow release of pediocin. BioNanoScience, 3(1), 37–42. Scholar
  24. Papagianni, M. (2003). Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnology Advances, 21(6), 465–499.CrossRefGoogle Scholar
  25. Rodríguez, J. M., Martínez, M. I., & Kok, J. (2002). Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Critical Reviews in Food Science and Nutrition, 42(2), 91–121. Scholar
  26. Schillinger, U., & Lucke, F. K. (1989). Antibacterial activity of lactobacillus-sake isolated from meat. Applied and Environmental Microbiology, 55(8), 1901–1906.PubMedPubMedCentralGoogle Scholar
  27. Taylor, T. M., Davidson, P. M., Bruce, B. D., & Weiss, J. (2005). Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition, 45(7–8), 587–605. Scholar
  28. Taylor, T. M., Gaysinsky, S., Davidson, P. M., Bruce, B. D., & Weiss, J. (2007). Characterization of antimicrobial-bearing liposomes by ζ-potential, vesicle size, and encapsulation efficiency. Food Biophysics, 2(1), 1–9. Scholar
  29. Were, L. M., Bruce, B., Davidson, P. M., & Weiss, J. (2004). Encapsulation of nisin and lysozyme in liposomes enhances efficacy against Listeria monocytogenes. Journal of Food Protection, 67(5), 922–927.CrossRefGoogle Scholar
  30. Yang, R., Johnson, M. C., & Ray, B. (1992). Novel method to extract large amounts of bacteriocins from lactic acid bacteria. Applied and Environmental Microbiology, 58(10), 3355–3359.PubMedPubMedCentralGoogle Scholar
  31. Zimmermann, E., & Mu, R. H. (2001). Electrolyte- and pH-stabilities of aqueous solid lipid nanoparticle (SLN™) dispersions in artificial gastrointestinal media. European Journal of Pharmaceutics and Biopharmaceutics, 52(2), 203–210.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unidad de Investigación y Desarrollo en AlimentosTecnológico Nacional de México /I.T. VeracruzVeracruzMexico
  2. 2.Tecnológico Nacional de México/I.TTuxtepecMexico
  3. 3.Instituto Politécnico Nacional (Escuela Superior de Física y Matemáticas)MexicoMexico

Personalised recommendations