Food and Bioprocess Technology

, Volume 11, Issue 12, pp 2204–2216 | Cite as

A Short Extraction Time of Polysaccharides from Fenugreek (Trigonella foencem graecum) Seed Using Continuous Ultrasound Acoustic Cavitation: Process Optimization, Characterization and Biological Activities

  • Ala Ghasemi Kia
  • Ali GanjlooEmail author
  • Mandana Bimakr
Original Paper


In this study, the effective variables involved in ultrasound-assisted extraction (UAE) of fenugreek (Trigonella foenum graecum) seeds polysaccharides (FSPs) were optimized through Box–Behnken response surface design. The maximum yield of FSPs was 33.49% under the modified optimum conditions of an ultrasound power of 120 W, an irradiation time of 22 min and a liquid-to-solid ratio (L/S) of 30:1 mL g−1. The predicted yield was in a very good agreement with the experimental yield of 33.41%. This value was higher than the FSPs yield obtained using conventional extraction (CE) method for 180 min at the same extraction temperature and L/S ratio. The primary chemical and structural characteristics were investigated by UV, FT-IR, and GC-MS. FSPs found to be a heteropolysaccharide consisted of galactose (38.18%), glucose (3.71%), mannose (46.13%), rhamnose (1.02%), and arabinose (0.83%). Furthermore, the FSPs exhibited considerable scavenging activity against 1,1-Diphenyl-2-Picrylhydrazyl free radicals and ferric reducing antioxidant power and reducing power, in a concentration-dependent mode in vitro. Our results suggested that UAE technique gave a higher yield of FSPs with a shorter extraction time than the CE and FSPs can also be used as promising resources of natural agent for functional foods and medicinal industries.


Fenugreek seed Ultrasound-assisted extraction Polysaccharides Response surface methodology Antioxidant activity 


  1. Ahmadiani, A., Javan, M., Semnanian, S., Barat, E., & Kamalinejad, M. (2001). Anti-inflammatory and antipyretic effects of Trigonella foenum-graecum leaves extract in the rat. Journal of Ethnopharmacology, 75(2-3), 283–286.CrossRefGoogle Scholar
  2. Alzorqi, I., Singh, A., Manickam, S., & Al-Qrimli, H. F. (2017). Optimization of ultrasound assisted extraction (UAE) of β-D-glucan polysaccharides from Ganoderma lucidum for prospective scale-up. Resource-Efficient Technologies, 3(1), 46–54.CrossRefGoogle Scholar
  3. Amin, A., Alkaabi, A., Al-Falasi, S., & Daoud, S. A. (2005). Chemopreventive activities of Trigonella foenum-graecum (fenugreek) against breast cancer. Cell Biology International, 29(8), 687–694.CrossRefGoogle Scholar
  4. AOAC. (1990). Association of official analytical chemists (13 th ed.). Washington, DC, USA. Google Scholar
  5. Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The frap assay. Analytical Biochemistry, 239(1), 70–76.CrossRefGoogle Scholar
  6. Brummer, Y., Cui, W., & Wang, Q. (2003). Extraction, purification and physicochemical characterization of fenugreek gum. Food Hydrocolloids, 17(3), 229–236.CrossRefGoogle Scholar
  7. Chen, R., Li, Y., Dong, H., Liu, Z., Li, S., Yang, S., & Li, X. (2012). Optimization of ultrasonic extraction process of polysaccharides from Ornithogalum Caudatum Ait and evaluation of its biological activities. Ultrasonics Sonochemistry, 19(6), 1160–1168.CrossRefGoogle Scholar
  8. Cheung, Y.-C., Siu, K.-C., & Wu, J.-Y. (2013). Kinetic models for ultrasound-assisted extraction of water-soluble components and polysaccharides from medicinal fungi. Food and Bioprocess Technology, 6(10), 2659–2665.CrossRefGoogle Scholar
  9. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.CrossRefGoogle Scholar
  10. Duh, P. D., Du, P. C., & Yen, G. C. (1999). Action of methanolic extract of mung bean hulls as inhibitors of lipid peroxidation and non-lipid oxidative damage. Food and Chemical Toxicology, 37(11), 1055–1061.CrossRefGoogle Scholar
  11. Fathi, M., Mohebbi, M., & Koocheki, A. (2016). Some physico-chemical properties of Prunus armeniaca L. gum exudates. International Journal of Biological Macromolecules, 82, 744–750.CrossRefGoogle Scholar
  12. Feng, K., Chen, W., Sun, L., Liu, J., Zhao, Y., Li, L., Wang, Y., & Zhang, W. (2015). Optimization extraction, preliminary characterization and antioxidant activity in vitro of polysaccharides from Stachys sieboldii Miq. Tubers. Carbohydrate Polymers, 125, 45–52.CrossRefGoogle Scholar
  13. Feng, S., Cheng, H., Fu, L., Ding, C., Zhang, L., Yang, R., & Zhou, Y. (2014). Ultrasonic-assisted extraction and antioxidant activities of polysaccharides from Camellia oleifera leaves. International Journal of Biological Macromolecules, 68, 7–12.CrossRefGoogle Scholar
  14. Gharibzahedi, S. M. T., Mousavi, S. M., Khodaiyan, F., & Hamedi, M. (2012). Optimization and characterization of walnut beverage emulsions in relation to their composition and structure. International Journal of Biological Macromolecules, 50(2), 376–384.CrossRefGoogle Scholar
  15. Han, L., Suo, Y., Yang, Y., Meng, J., & Hu, N. (2016). Optimization, characterization, and biological activity of polysaccharides from Berberis dasystachya maxim. International Journal of Biological Macromolecules, 85, 655–666.CrossRefGoogle Scholar
  16. Hromádková, Z., Ebringerová, A., & Valachovic, P. (2002). Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.). Ultrasonics Sonochemistry, 9(1), 37–44.CrossRefGoogle Scholar
  17. Hu, J., Jia, X., Fang, X., Li, P., He, C., & Chen, M. (2016). Ultrasonic extraction, antioxidant and anticancer activities of novel polysaccharides from chuanxiong rhizome. International Journal of Biological Macromolecules, 85, 277–284.CrossRefGoogle Scholar
  18. Hung, P. V., & Nhi, N. N. Y. (2012). Nutritional composition and antioxidant capacity of several edible mushrooms grown in the southern Vietnam. International Food Research Journal, 19(2), 611–615.Google Scholar
  19. Jalili Safaryan, M., Ganjloo, A., Bimakr, M., & Zarringhalami, S. (2016). Optimization of ultrasound-assisted extraction, preliminary characterization and in vitro antioxidant activity of polysaccharides from green pea pods. Foods, 5(4), 78. Scholar
  20. Jia, X. J., Ding, C. B., Yuan, S., Zhang, Z. W., Du, L., & Yuan, M. (2014). Extraction, purification and characterization of polysaccharides from hawk tea. Carbohydrate Polymers, 99, 319–324.CrossRefGoogle Scholar
  21. Jiang, J. X., Zhu, L. W., Zhang, W. M., & Sun, R. C. (2007). Characterization of galactomannan gum from fenugreek (Trigonella foenum-graecum) seeds and its rheological properties. International Journal of Polymeric Materials, 56(12), 1145–1154.CrossRefGoogle Scholar
  22. Jooyandeh, H., Noshad, M., & Amir Khamirian, R. (2018). Modeling of ultrasound-assisted extraction, characterization and in vitro pharmacological potential of polysaccharides from Vaccinium arctostaphylos L. International Journal of Biological Macromolecules, 107(Pt A), 938–948.CrossRefGoogle Scholar
  23. Kannan, S., Manivannan, R., Balasubramaniam, A., & Kumar, N. S. (2010). Formulation and evaluation of aspirin delayed release tablet. International Journal of Comprehensive Pharmacy, 1–3.Google Scholar
  24. Kaviarasan, S., Vijayalakshmi, K., & Anuradha, C. V. (2004). Polyphenol-rich extract of fenugreek seeds protect erythrocytes from oxidative damage. Plant Foods for Human Nutrition, 59(4), 143–147.CrossRefGoogle Scholar
  25. Ktari, N., Trabelsi, I., Bardaa, S., Triki, M., Bkhairia, I., Ben Slama-Ben Salem, R., Nasri, M., & Ben Salah, R. (2017). Antioxidant and hemolytic activities, and effects in rat cutaneous wound healing of a novel polysaccharide from fenugreek (Trigonella foenum-graecum) seeds. International Journal of Biological Macromolecules, 95, 625–634.CrossRefGoogle Scholar
  26. Lai, F., Wen, Q., Li, L., Wu, H., & Li, X. (2010). Antioxidant activities of water-soluble polysaccharide extracted from mung bean (Vignaradiata L.) hull with ultrasonic assisted treatment. Carbohydrate Polymers, 81(2), 323–329.CrossRefGoogle Scholar
  27. Leela, N. K., & Shafeekh, K. M. (2008). Fenugreek. In Chemistry of spices, Ed. By Parthasarathy V.A., Chempakam B., Zachariah T.J. CAB International. Google Scholar
  28. Li, L., Ding, C., Yuan, S., Zhang, Z., Chen, Y., Hu, C., et al. (2016). Ultrasonic-assisted enzymatic extraction and antioxidant activity of polysaccharides from Setaria viridis. Separation Science and Technology, 51(11), 1798–1805.CrossRefGoogle Scholar
  29. Li, Q., Yu, N., Wang, Y., Sun, Y., Lu, K., & Guan, W. (2013). Extraction optimization of Bruguiera gymnorrhiza polysaccharides with radical scavenging activities. Carbohydrate Polymers, 96(1), 148–155.CrossRefGoogle Scholar
  30. Liu, D.-S., Yan, L., & Han, J.-T. (2012). Extraction, identification and content determination of polysaccharides from the leaves of Prunus pseudocerasus Lindl. Journal of Anhui Agricultural Sciences, 40, 10861–10862.Google Scholar
  31. Liu, J., Willför, S., & Xu, C. (2015). A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactive Carbohydrates and Dietary Fibre, 5(1), 31–61.CrossRefGoogle Scholar
  32. Liu, X. L., Qiu, H. Y., Wang, Q., Wu, L. Y., & Zhang, C. H. (2011). Qualitative study on chemical constituents of Amomum tsao-ko. China Condiment, 36(1), 104–106.Google Scholar
  33. Ma, C.-w., Feng, M., Zhai, X., Hu, M., You, L., Luo, W., & Zhao, M. (2013). Optimization for the extraction of polysaccharides from Ganoderma lucidum and their antioxidant and antiproliferative activities. Journal of the Taiwan Institute of Chemical Engineers, 44(6), 886–894.CrossRefGoogle Scholar
  34. Madar, Z., & Shomer, I. (1990). Polysaccharide composition of a gel fraction derived from fenugreek and its effect on starch digestion and bile acid absorption in rats. Journal of Agricultural and Food Chemistry, 38(7), 1535–1539.CrossRefGoogle Scholar
  35. Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: Process and product optimization using designed experiments. John Wiley & Sons, Hoboken, New Jersey, USA, 4th edition.Google Scholar
  36. Noshad, M., Mohebbi, M., Shahidi, F., & Mortazavi, S. A. (2012). Multi-objective optimization of osmotic–ultrasonic pretreatments and hot-air drying of quince using response surface methodology. Food and Bioprocess Technology, 5(6), 2098–2110.CrossRefGoogle Scholar
  37. Ochoa-Rivas, A., Nava-Valdez, Y., Serna-Saldívar, S. O., & Chuck-Hernández, C. (2017). Microwave and ultrasound to enhance protein extraction from peanut flour under alkaline conditions: Effects in yield and functional properties of protein isolates. Food and Bioprocess Technology, 10(3), 543–555.CrossRefGoogle Scholar
  38. Oyaizu, M. (1986). Studies on product of browning reaction prepared from glucose amine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307–315.CrossRefGoogle Scholar
  39. Pakrokh Ghavi, P. (2015). The extraction process optimization of antioxidant polysaccharides from marshmallow (Althaea officinalis L.) roots. International Journal of Biological Macromolecules, 75, 51–57.CrossRefGoogle Scholar
  40. Raza, A., Li, F., Xu, X., & Tang, J. (2017). Optimization of ultrasonic-assisted extraction of antioxidant polysaccharides from the stem of Trapa quadrispinosa using response surface methodology. International Journal of Biological Macromolecules, 94(Pt A), 335–344.CrossRefGoogle Scholar
  41. Razavi, S. M. A., Taheri, H., & Quinchia, L. A. (2011). Steady shear flow properties of wild sage (Salvia macrosiphon) seed gum as a function of concentration and temperature. Food Hydrocolloids, 25(3), 451–458.CrossRefGoogle Scholar
  42. Sarfarazi, M., Jafari, S. M., & Rajabzadeh, G. (2015). Extraction optimization of saffron nutraceuticals through response surface methodology. Food Analytical Methods, 8(9), 2273–2285.CrossRefGoogle Scholar
  43. Sevag, M. G., Lackman, D. B., & Smolens, J. (1938). The isolation of the components of streptococcal nucleoproteins in serologically active form. Journal of Biological Chemistry, 124(2), 425–436.Google Scholar
  44. Song, M., Li, Q. X., & He, C. L. (2009). Identification and analgesic effect of Angelica sinensis extract. Journal of Xiang Ning University, 23, 194–196.Google Scholar
  45. Srinivasan, K. (2006). Fenugreek (Trigonella foenum-graecum): A review of health beneficial physiological effects. Food Reviews International, 22(2), 203–224.CrossRefGoogle Scholar
  46. Sun, R. C., & Tomkinsin, J. (2002). Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrasonics Sonochemistry, 9(2), 85–93.CrossRefGoogle Scholar
  47. Taylor, W. G., Zaman, M. S., Mir, Z., Mir, P. S., Acharya, S. N., Mears, G. J., & Elder, J. L. (1997). Analysis of steroidal sapogenins from amber fenugreek (Trigonella foenum-graecum) by capillary gas chromatography and combined gas chromatography/mass spectrometry. Journal of Agriculture and Food Chemistry, 45(3), 753–759.CrossRefGoogle Scholar
  48. Tian, Y., Zheng, B., Chen, C., & Zheng, Y. (2012a). Ultrasound-assisted extraction, preliminary characterization, and antioxidant activity of a novel water-soluble polysaccharide from Lotus (Nelumbo nucifera Gaertn.) seeds. Separation Science and Technology, 47(16), 2408–2416.Google Scholar
  49. Tian, Y., Zeng, H., Xu, Z., Zheng, B., Lin, Y., Gan, C., & Lo, Y. M. (2012b). Ultrasonic-assisted extraction and antioxidant activity of polysaccharides recovered from white button mushroom (Agaricus bisporus). Carbohydrate Polymers, 88(2), 522–529.CrossRefGoogle Scholar
  50. Vodenicarová, M., Drímalová, G., Hromádková, Z., Malovíková, A., & Ebringerová, A. (2006). Xyloglucan degradation using different radiation sources: A comparative study. Ultrasonics Sonochemistry, 13(2), 157–164.CrossRefGoogle Scholar
  51. Wang, J., Zhang, Q. B., Zhang, Z. S., & Li, Z. (2008). Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules, 42(2), 127–132.CrossRefGoogle Scholar
  52. Wang, Q., Sun, Y., Yang, B., Wang, Z., Liu, Y., Qi Cao, Q., Sun, X., & Kuang, H. (2014). Optimization of polysaccharides extraction from seeds of Pharbitis nil and its anti-oxidant activity. Carbohydrate Polymers, 102, 460–466.CrossRefGoogle Scholar
  53. Xie, J.-H., Shen, M.-Y., Xie, M.-Y., Nie, S.-P., Chen, Y., Li, C., Huang, D. F., & Wang, Y. X. (2012). Ultrasonic-assisted extraction, antimicrobial and antioxidant activities of Cyclocarya paliurus (batal.) iljinskaja polysaccharides. Carbohydrate Polymers, 89(1), 177–184.CrossRefGoogle Scholar
  54. Yang, N., Jin, Y., Jin, Z., & Xu, X. (2016). Electric-field-assisted extraction of garlic polysaccharides via experimental transformer device. Food and Bioprocess Technology, 9(9), 1612–1622.CrossRefGoogle Scholar
  55. Ying, Z., Han, X., & Li, J. (2011). Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chemistry, 127(3), 1273–1279.CrossRefGoogle Scholar
  56. Yu, P., & Zhang, Y. (2017). Separation and purification of Porphyra haitanensis polysaccharide and its preliminary structural characterization. Separation Science and Technology, 52(11), 1835–1842.CrossRefGoogle Scholar
  57. Zhang, D.-Y., Wan, Y., Xu, J.-Y., Wu, G.-H., Li, L., & Yao, X.-H. (2016). Ultrasound extraction of polysaccharides from mulberry leaves and their effect on enhancing antioxidant activity. Carbohydrate Polymers, 137, 473–479.CrossRefGoogle Scholar
  58. Zhang, L., & Wang, M. (2017). Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. International Journal of Biological Macromolecules, 95, 675–681.CrossRefGoogle Scholar
  59. Zhang, Z., Lv, G., He, W., Shi, L., Pan, H., & Fan, L. (2013). Effects of extraction methods on the antioxidant activities of polysaccharides obtained from Flammulina velutipes. Carbohydrate Polymers, 98(2), 1524–1531.CrossRefGoogle Scholar
  60. Zhang, Y., Zhang, H., Wang, L., Qian, H., & Qi, X. (2015). Extraction of oat (Avena sativa L.) antifreeze proteins and evaluation of their effects on frozen dough and steamed bread. Food and Bioprocess Technology, 8(10), 2066–2075.CrossRefGoogle Scholar
  61. Zhao, Q., Kennedy, J. F., Wang, X., Yuan, X., Zhao, B., Peng, Y., & Huang, Y. (2011). Optimization of ultrasonic circulating extraction of polysaccharides from Asparagus officinalis using response surface methodology. International Journal of Biological Macromolecules, 49(2), 181–187.CrossRefGoogle Scholar
  62. Zhao, T. T., Zhang, Q. B., Qi, H. M., Zhang, H., Niu, X., Xu, Z. H., et al. (2006). Degradation of porphyran from porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight. International Journal of Biological Macromolecules, 38(1), 45–50.CrossRefGoogle Scholar
  63. Zheng, Q., Ren, D., Yang, N., & Yang, X. (2016). Optimization for ultrasound-assisted extraction of polysaccharides with chemical composition and antioxidant activity from the Artemisia sphaerocephala Krasch seeds. International Journal of Biological Macromolecules, 91, 856–866.CrossRefGoogle Scholar
  64. Zhu, J., Yang, Y., Wen, Y., & Zhao, G. (2013). An improved ultrasound-assisted alkali extraction process of Perilla seed meal polysaccharide. Separation Science and Technology, 48(18), 2771–2778.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Food Science and Engineering, Faculty of AgricultureUniversity of ZanjanZanjanIran

Personalised recommendations